Higher Dimensional Irreducible Representations of the Pure Braid Group
- Mohammad Abdulrahim
- Hassan Tarraf
Abstract
The reduced Gassner representation is a multi-parameter representation of $%P_{n},$ the pure braid group on n strings. Specializing the parameters $%
t_{1},t_{2},...,t_{n}$ to nonzero complex numbers $x_{1},x_{2},...,x_{n}$
gives a representation $G_{n}(x_{1},\ldots ,x_{n}):P_{n}\rightarrow
GL(\mathbb{C}^{n-1})$ which is irreducible if and only if $x_{1}\ldots
x_{n}\neq 1$. In a previous work, we found a sufficient condition for the
irreducibility of the tensor product of two irreducible Gassner
representations. In our current work, we find a sufficient condition that guarantees the irreducibility of the tensor product of three Gassner representations. Next, a generalization of our result is given by considering the irreducibility of the tensor product of $k$ representations (\;$k \geq 3\;$).
- Full Text: PDF
- DOI:10.5539/jmr.v3n4p141
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org