Local Entropy Solution of a Convection-Diffusion Type Integro-Differential Equation
- Mohamed Bance
- Safimba Soma
Abstract
In this work, we prove existence local entropy solution of a convection-diffusion type integro-differential equation \displaystyle \partial_{t}\bigg(k* (j(v)-j(v_{0}))\bigg) - \nabla\cdot\bigg( a(x,\nabla \varphi (v))+ F(\varphi (v))\bigg) = f in $Q_{T}:= (0,T) \times \Omega$ with Dirichlet boundary condition $v(0, \cdot{})= v_{0}$ in $\Omega$ and $L^{1}$-data $f \in L^{1}((0,T)\times \Omega), \ j(v_{0})\in L^{1}(\Omega)$. To that end, regularising the data by $L^{\infty}$-functions, using the existence result of entropy solution for these more approximate data and a comparison and diagonal principle of the regularised entropy solution, we prove the existence of an local entropy solution.
- Full Text: PDF
- DOI:10.5539/jmr.v16n6p1
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org