Logistic Regression Analytically Solves the 3D Navier Stokes Equations
- Edward H. Jimenez
Abstract
The velocity $\mathbf{u=}2\nu P\left( 1-P\right) \left( \begin{array} [c]{c}% \mu_{1}\\ -\mu_{2}\\ \mu_{3}% \end{array} \right) $\ and pressure $p,$ where $p,\mathbf{u}\in C^{\infty}(\mathbb{R}^{3}\times\lbrack0,\infty)),P=\frac{1}{1+e^{\mu_{1}x+\mu_{2}y+\mu_{3}z-kt}}$ have been verified and validated in commercial softwares that has implemented Vector Calculus. ...- Full Text: PDF
- DOI:10.5539/jmr.v15n6p19
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
- h-index (December 2021): 22
- i10-index (December 2021): 78
- h5-index (December 2021): N/A
- h5-median (December 2021): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org