Linear Maps Preserving Inverses of Tensor Products of Hermite Matrices
- Shuang Yan
- Yang Zhang
Abstract
Let C be a complex field, H_{m_1m_2} be a linear space of tensor products of Hermite matrices H_{m_1}⊗H_{m_2} over C , and suppose m_{1}, m_2≥2 are positive integers. A linear map f :H_{m_1m_2} → H_n is called a linear inverse preserver if f( X_{1} ⊗X_{2} )^{-1}= f( X_{1}⊗X_{2}) ^{-1} ) for arbitrary invertible matrix X_{1} ⊗ X_{2}∈ H_{m_{1}m_{2}} .The aim of this paper is to characterize the linear maps preserving inverses of tensor products of Hermite matrices.
- Full Text: PDF
- DOI:10.5539/jmr.v15n4p75
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
- h-index (December 2021): 22
- i10-index (December 2021): 78
- h5-index (December 2021): N/A
- h5-median (December 2021): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org