Linear Maps Preserving Inverses of Tensor Products of Hermite Matrices

Shuang Yan ${ }^{1}$, Yang Zhang ${ }^{2}$
${ }^{1}$ School of Mathematics, Northeast Forestry University, Harbin, China
Correspondence: Yang Zhang, School of Mathematics, Northeast Forestry University, Harbin, 150040, China

Received: April 10, 2023 Accepted: June 27, 2023 Online Published: July 28, 2023
doi:10.5539/jmr.v15n4p75 URL: https://doi.org/10.5539/jmr.v15n4p75

Abstract

Let C be a complex field, $H_{m_{1} m_{2}}$ be a linear space of tensor products of Hermite matrices $H_{m_{1}} \otimes H_{m_{2}}$ over C, and suppose $m_{1}, m_{2} \geq 2$ are positive integers. A linear map $f: H_{m_{1} m_{2}} \rightarrow H_{n}$ is called a linear inverse preserver if $f\left(X_{1} \otimes X_{2}\right)^{-1}=$ $f\left(\left(X_{1} \otimes X_{2}\right)^{-1}\right)$ for arbitrary invertible matrix $X_{1} \otimes X_{2} \in H_{m_{1} m_{2}}$. The aim of this paper is to characterize the linear maps preserving inverses of tensor products of Hermite matrices.

Keywords: linear preserver, inverses, tensor product

1. Introduction

Let I_{n} be the $n \times n$ identity matrix, G_{n} be a set of all $n \times n$ invertible matrices, P^{T} be the transpose matrix of P, and suppose P^{*} is the conjugate transpose matrix of P. We denote by M_{n} and H_{n} the algebra of all $n \times n$ matrices and Hermite matrices over C, and by $M_{m_{1} \cdots m_{l}}$ and $H_{m_{1} \cdots m_{l}}$ the linear space of tensor products of matrices $M_{m_{1}} \otimes \cdots \otimes M_{m_{l}}$ and Hermite matrices $H_{m_{1}} \otimes \cdots \otimes H_{m_{l}}$. Let P_{n}^{2} and P_{n}^{3} be subspace of M_{n} consisting of all idempotent and tripotent matrices.

In 2012, Li Zhiguang combined the linear preserver problems with tensor products of matrices in the context of quantum theory, which not only provided a new direction for the study of the preserver problems, but also had potential application value for the future development of quantum information science. As for the study of linear preserver problems of tensor products of matrices, referred to references (Lim, 2014; Huang, Shi \&Sze, 2016; Duffner \&da Cruz, 2016).
Changing the set of preserving functions is one of the basic ideas in the study of preserver problems. Zheng, Xu and Fošner in 2015 described the linear maps preserving idmpotence of tensor products of matrices (Zheng, Xu\&Fošner, 2015). Deng, Zheng and Xu in 2021 changed the set of the linear maps from tensor products of matrices to the tensor products of symmetric matrices(Deng, Zheng\&Xu, 2021). Yan in 2022 described the linear maps preserving inverses tensor products of matrices (Yan, 2022). Based on it, this paper changes the set of linear maps from the tensor products of matrices to the tensor products of Hermite matrices.
Generally speaking, linear preservers of inverses come down to linear preservers of idempotence. Xu in 2016 described a linear map that preserves the idempotence of the tensor products of Hermite matrices ($\mathrm{Xu}, 2016$), and the result is as follows: A linear map $f: H_{m_{1} \cdots m_{l}} \rightarrow H_{n}\left(m_{1} \cdots m_{l} \geq n\right)$ is called an idempotent preserver of tensor products of matrices if and only if $f=0$ or there exists a unitary matrix $P \in M_{n}$ and a canonical map π on $H_{m_{1} \cdots m_{l}}$ such that $f(X)=P \pi(X) P^{*}$ for any $X \in H_{m_{1} \cdots m_{l}}$ when $m_{1} \cdots m_{l}=n$.
The purpose of this paper is to describe the linear maps preserving inverses of tensor products of Hermite matrices as well as the idempotent preserver of tensor products of Hermite matrices with the restriction of $m_{1} \cdots m_{l} \geq n$ is removed compared with reference ($\mathrm{Xu}, 2016$).It enriches the preservation problem in Hermite matrices space and provides a more perfect mathematical theory foundation for quantum information science.

Because of the complexity and arbitrariness of the matrices, We need to do a lot of calculations. In order to solve this problem, in the following proofs, we only consider the case of $l=2$, the case of $l>2$ are similar. In addition, the following concepts are needed for this article: A linear map π on $H_{m_{1} \cdots m_{l}}$ is called canonical, if it satisfies

$$
\pi\left(X_{1} \otimes \cdots \otimes X_{l}\right)=\tau_{1}\left(X_{1}\right) \otimes \cdots \otimes \tau_{l}\left(X_{l}\right)
$$

with $\tau_{i}\left(X_{i}\right)(i=1, \cdots, l)=X_{i}$ or X_{i}^{T}. A linear map is called generalized canonical, if it satisfies

$$
\sigma\left(X_{1} \otimes \cdots \otimes X_{l}\right)=\left(\underset{i=1}{\left.\stackrel{s}{\oplus} \pi_{i}\left(X_{1} \otimes \cdots \otimes X_{l}\right) \otimes I_{p_{i}}\right) \oplus 0, \text {, }, \cdots,}\right.
$$

where π_{i} are the canonical maps, $p_{i}(i=1, \cdots, s)$ are natural numbers, and I_{0} means that there is not the item which corresponds to it in driect sum.

2. Preliminary Result

Before proving the theorem, we need the following lemmas.
Lemma 1 Let $U \in M_{n}$ be an invertible matrix, if $U X=X U$ for any $X \in H_{n}$, then $U=\lambda I$ with $\lambda \neq 0$.
Proof. Take $X=E_{i i}(i=1, \cdots, n) . U E_{i i}=E_{i i} U$ shows that U is a diagonal matrix. Then take $X=E_{i j}+E_{j i}$ and $X=\mathbf{i}\left(E_{i j}-E_{j i}\right)(1 \leq i<j \leq n)$, and then we get that $U\left(E_{i j}+E_{j i}\right)=\left(E_{i j}+E_{j i}\right) U$ and $U \mathbf{i}\left(E_{i j}-E_{j i}\right)=\mathbf{i}\left(E_{i j}-E_{j i}\right) U$. The Lemmal can be proved.
Lemma 2(Zhang\&Cao, 2001) If $A \in P_{n}^{2}$, there exists an invertible matrix Q and a non-negative integer r such that

$$
A=Q \operatorname{diag}\left(I_{r}, 0_{n-r}\right) Q^{-1},
$$

where $\operatorname{rank} A=r$.
Lemma 3(Zhang\&Cao, 2001) If $A \in P_{n}^{3}$, there exists an invertible matrix Q and non-negative integers p, q, s such that

$$
A=Q \operatorname{diag}\left(I_{p},-I_{q}, 0_{s}\right) Q^{-1}
$$

where $\operatorname{rank} A=p+q, p=\operatorname{rank}\left(A+I_{n}\right)+\operatorname{rank}(A)-n$ and $p+q+s=n$.
Lemma 4(Sheng\&Tang, 2020) Let F be a field of $C h \neq 2$. A linear map $\varphi: M_{m_{1} \cdots m_{l}}(F) \rightarrow M_{n}(F)\left(m_{1} \cdots m_{l}<n\right)$ preserves idempotence of tensor products of matrices if and only if there exists an invertible matrix $Q \in M_{n}(F)$ and a generalized canonical map σ on $M_{m_{1} \cdots m_{l}}(F)$ such that

$$
\varphi(X)=Q \sigma(X) Q^{-1}, \forall X \in M_{m_{1} \cdots m_{l}}(F)
$$

Lemma 5 A linear map $\varphi: H_{m_{1} \cdots m_{l}} \rightarrow H_{n}\left(m_{1} \cdots m_{l}<n\right)$ preserves idempotence of tensor products of matrices if and only if there exists a unitary matrix $T \in M_{n}$ and a generalized canonical map σ on $H_{m_{1} \cdots m_{l}}$ such that

$$
\varphi(X)=T \sigma(X) T^{*}, \forall X \in H_{m_{1} \cdots m_{l}}
$$

Proof. First, we give the proof of the sufficiency part of the lemma : If $X^{2}=X$ for any $X=X_{1} \otimes \cdots \otimes X_{l} \in H_{m_{1} \cdots m_{l}}$, then

$$
\varphi(X)^{2}=T \sigma(X) T^{*} T \sigma(X) T^{*}=T \sigma(X)^{2} T^{*}
$$

Because

$$
\left(X_{1} \otimes \cdots \otimes X_{l}\right)^{2}=X_{1}^{2} \otimes \cdots \otimes X_{l}^{2}=X_{1} \otimes \cdots \otimes X_{l}
$$

we have

$$
\left(\pi\left(X_{1} \otimes \cdots \otimes X_{l}\right) \otimes I_{p_{i}}\right)^{2}=\tau_{1}\left(X_{1}\right)^{2} \otimes \cdots \otimes \tau_{l}\left(X_{l}\right)^{2} \otimes I_{p_{i}}^{2}=\tau_{1}\left(X_{1}\right) \otimes \cdots \otimes \tau_{l}\left(X_{l}\right) \otimes I_{p_{i}}
$$

and by the definitions of the canonical maps and generalized canonical maps, we have $\sigma(X)^{2}=\sigma(X)$,i.e., $\varphi(X)^{2}=\varphi(X)$. Then the sufficiency part is established and the necessity part is proved below.
If $\varphi=0$, the necessity is obvious.
If $\varphi \neq 0$, let φ be linearly extended into $\tilde{\varphi}: M_{m_{1} \cdots m_{l}} \rightarrow M_{n}$. Since $C h C=0$, applying the Lemma 4, we know that there exists an invertible matrix $Q \in M_{n}$ and a generalized canonical map σ on $M_{m_{1} \cdots m_{l}}$, such that

$$
\tilde{\varphi}(X)=Q \sigma(X) Q^{-1}, \forall X \in M_{m_{1} \cdots m_{l}} .
$$

Since $\tilde{\varphi}\left(H_{m_{1} \cdots m_{l}}\right)=\varphi\left(H_{m_{1} \cdots m_{l}}\right) \in H_{n}$, we derive that

$$
\left(Q \sigma(X) Q^{-1}\right)^{*}=Q \sigma(X) Q^{-1}, \forall X \in H_{m_{1} \cdots m_{l}}
$$

that is

$$
\sigma(X) Q^{*} Q=Q^{*} Q \sigma(X), \forall X \in H_{m_{1} \cdots m_{l}}
$$

Since $\sigma(X) \in H_{n}$ and $Q^{*} Q \in G_{n}$, we have $Q^{*} Q=\lambda I, \lambda \neq 0$ according to Lemma 1. Because Q is an invertible matrix, we get $\left|Q^{*} Q\right|=\left|Q^{*}\right||Q|=\lambda^{n}$. Suppose $\left|Q^{*}\right|=a+b \mathbf{i},|Q|=a-b \mathbf{i}$. Then $\lambda>0$. Let $T=\lambda^{-\frac{1}{2}} Q$, then $T^{*} T=I$. So T is a unitary matrix, and we derive that

$$
\tilde{\varphi}(X)=T \sigma(X) T^{*}, \forall X \in M_{m_{1} \cdots m_{l}},
$$

$$
\varphi(X)=T \sigma(X) T^{*}, \forall X \in H_{m_{1} \cdots m_{l}} .
$$

Then Lemma 5 can be proved.
Lemma 6 Assuming $f: H_{m_{1} m_{2}} \rightarrow H_{n}$ is a linear map preserving inverses of tensor products of Hermite matrices, then

$$
f\left(I_{m_{1} m_{2}}\right) f\left(E_{i i} \otimes E_{k k}\right)=f\left(E_{i i} \otimes E_{k k}\right) f\left(I_{m_{1} m_{2}}\right)=f\left(E_{i i} \otimes E_{k k}\right)^{2}
$$

where $i \in\left[1, m_{1}\right]$ and $k \in\left[1, m_{2}\right]$.
Proof. Since $I_{m_{1} m_{2}}^{-1}=I_{m_{1} m_{2}}$, we have $f\left(I_{m_{1} m_{2}}\right)^{-1}=f\left(I_{m_{1} m_{2}}\right)$ and $f\left(I_{m_{1} m_{2}}\right)^{2}=I_{n}$. So for any $x \neq 0, x \neq 1$

$$
\left(I_{m_{1} m_{2}}+(x-1)\left(E_{i i} \otimes E_{k k}\right)\right)^{-1}=I_{m_{1} m_{2}}+\left(x^{-1}-1\right)\left(E_{i i} \otimes E_{k k}\right)
$$

then

$$
\begin{align*}
& f\left(I_{m_{1} m_{2}}+(x-1)\left(E_{i i} \otimes E_{k k}\right)\right) f\left(I_{m_{1} m_{2}}+\left(x^{-1}-1\right)\left(E_{i i} \otimes E_{k k}\right)\right)=I_{n}, \tag{1}\\
& f\left(I_{m_{1} m_{2}}+\left(x^{-1}-1\right)\left(E_{i i} \otimes E_{k k}\right)\right) f\left(I_{m_{1} m_{2}}+(x-1)\left(E_{i i} \otimes E_{k k}\right)\right)=I_{n} \tag{2}
\end{align*}
$$

combine equation (1) and (2)

$$
\left(x^{-1}-1\right)\left(f\left(I_{m_{1} m_{2}}\right) f\left(E_{i i}-E_{k k}\right)-f\left(E_{i i}-E_{k k}\right) f\left(I_{m_{1} m_{2}}\right)\right)=0
$$

Due to the arbitrariness of x, it follows that

$$
\begin{equation*}
f\left(I_{m_{1} m_{2}}\right) f\left(E_{i i}-E_{k k}\right)=f\left(E_{i i}-E_{k k}\right) f\left(I_{m_{1} m_{2}}\right), \tag{3}
\end{equation*}
$$

and put (3) into equation (1) or (2)

$$
\left(x^{-1}+x-2\right)\left(f\left(I_{m_{1} m_{2}}\right) f\left(E_{i i}-E_{k k}\right)-f\left(E_{i i}-E_{k k}\right)^{2}\right)=0
$$

Because of the arbitrariness of x, the Lemma 6 can be proved.
Lemma 7 Assuming $f: H_{m_{1} m_{2}} \rightarrow H_{n}$ is a linear map preserving inverses of tensor products of Hermite matrices, and let $E_{i i}=D_{i}, E_{k k}=D_{k}, E_{i j}+E_{j i}=D_{i j}^{+}, E_{i j}-E_{j i}=D_{i j}^{-}, E_{k l}+E_{l k}=D_{k l}^{+}, E_{k l}-E_{l k}=D_{k l}^{-}$, where $i, j \in\left[1, m_{1}\right], k, l \in\left[1, m_{2}\right]$, $i \neq j$ and $k \neq l$, then we have that

$$
\begin{align*}
f\left(I_{m_{1} m_{2}}\right) f\left(\left(a D_{i}+b \mathbf{i} D_{i j}^{-}\right) \otimes\left(c D_{k}+d D_{k l}^{+}\right)\right) & =f\left(\left(a D_{i}+b \mathbf{i} D_{i j}^{-}\right) \otimes\left(c D_{k}+d D_{k l}^{+}\right)\right) f\left(I_{m_{1} m_{2}}\right), \tag{4}\\
f\left(I_{m_{1} m_{2}}\right) f\left(\left(a D_{i}+b D_{i j}^{+}\right) \otimes\left(c D_{k}+d \mathbf{i} D_{k l}^{-}\right)\right) & =f\left(\left(a D_{i}+b D_{i j}^{+}\right) \otimes\left(c D_{k}+d \mathbf{i} D_{k l}^{-}\right)\right) f\left(I_{m_{1} m_{2}}\right) \tag{5}\\
f\left(I_{m_{1} m_{2}}\right) f\left(\left(a D_{i j}^{+}+b \mathbf{i} D_{i j}^{-}\right) \otimes\left(c D_{k l}^{+}+d \mathbf{i} D_{k l}^{-}\right)\right) & =f\left(\left(a D_{i j}^{+}+b \mathbf{i} D_{i j}^{-}\right) \otimes\left(c D_{k l}^{+}+d \mathbf{i} D_{k l}^{-}\right)\right) f\left(I_{m_{1} m_{2}}\right) \tag{6}
\end{align*}
$$

where $a, b, c, d \in\{0,1\}, a \neq b$ and $c \neq d$.
Proof. First, we give the proof of the equation (4). For any $x \neq \pm 1$,

$$
\begin{aligned}
& \left(I_{m_{1} m_{2}}+\frac{x}{1+x}\left(\left(a D_{i}+b \mathbf{i} D_{i j}^{-}\right) \otimes\left(c D_{k}+d D_{k l}^{+}\right)\right)-\frac{x}{1+x}\left(\left(D_{i}+b D_{j}\right) \otimes\left(D_{k}+d D_{l}\right)\right)\right)^{-1} \\
& =I_{m_{1} m_{2}}-\frac{x}{1-x}\left(\left(a D_{i}+b \mathbf{i} D_{i j}^{-}\right) \otimes\left(c D_{k}+d D_{k l}^{+}\right)\right)+\frac{x}{1-x}\left(\left(D_{i}+b D_{j}\right) \otimes\left(D_{k}+d D_{l}\right)\right)
\end{aligned}
$$

and suppose $f\left(I_{m_{1} m_{2}}\right)=A, f\left(\left(a D_{i}+b \mathbf{i} D_{i j}^{-}\right) \otimes\left(c D_{k}+d D_{k l}^{+}\right)\right)=C, f\left(\left(D_{i}+b D_{j}\right) \otimes\left(D_{k}+d D_{l}\right)\right)=B$, and then

$$
\left(A+\frac{x}{1+x} C-\frac{x}{1+x} B\right)\left(A-\frac{x}{1-x} C+\frac{x}{1-x} B\right)=\left(A-\frac{x}{1-x} C+\frac{x}{1-x} B\right)\left(A+\frac{x}{1+x} C-\frac{x}{1+x} B\right)
$$

According to Lemma 6, we get $A B=B A$. So it follows that $2 x(A C-C A)=0$. As the arbitrariness of x, the equation (4) is proved. Evidently

$$
\begin{aligned}
& \left(I_{m_{1} m_{2}}+\frac{x}{1+x}\left(\left(a D_{i}+b D_{i j}^{+}\right) \otimes\left(c D_{k}+d \mathbf{i} D_{k l}^{-}\right)\right)-\frac{x}{1+x}\left(\left(D_{i}+b D_{j}\right) \otimes\left(D_{k}+d D_{l}\right)\right)\right)^{-1} \\
& =I_{m_{1} m_{2}}-\frac{x}{1-x}\left(\left(a D_{i}+b D_{i j}^{+}\right) \otimes\left(c D_{k}+d \mathbf{i} D_{k l}^{-}\right)\right)+\frac{x}{1-x}\left(\left(D_{i}+b D_{j}\right) \otimes\left(D_{k}+d D_{l}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left(I_{m_{1} m_{2}}+\frac{x}{1+x}\left(\left(a D_{i j}^{+}+b \mathbf{i} D_{i j}^{-}\right) \otimes\left(c D_{k l}^{+}+d \mathbf{i} D_{k l}^{-}\right)\right)-\frac{x}{1+x}\left(\left(D_{i}+D_{j}\right) \otimes\left(D_{k}+D_{l}\right)\right)\right)^{-1} \\
& =I_{m_{1} m_{2}}-\frac{x}{1-x}\left(\left(a D_{i j}^{+}+b \mathbf{i} D_{i j}^{-}\right) \otimes\left(c D_{k l}^{+}+d \mathbf{i} D_{k l}^{-}\right)\right)+\frac{x}{1-x}\left(\left(D_{i}+D_{j}\right) \otimes\left(D_{k}+D_{l}\right)\right),
\end{aligned}
$$

and then the above formulas can be used to prove the validity of equations(5) and (6) through direct calculation.
Lemma 8 Assuming $f: H_{m_{1} m_{2}} \rightarrow H_{n}$ is a linear map preserving inverses of tensor products of Hermite matrices, then

$$
f\left(E_{i i} \otimes E_{k k}\right) f\left(E_{j j} \otimes E_{l l}\right)=f\left(E_{j j} \otimes E_{l l}\right) f\left(E_{i i} \otimes E_{k k}\right)=0
$$

where $i, j \in\left[1, m_{1}\right], k, l \in\left[1, m_{2}\right], i \neq j$ and $k \neq l$.
Proof. For any $x, y \neq 0, x, y \neq 1$

$$
\left(I_{m_{1} m_{2}}+(x-1)\left(E_{i i} \otimes E_{k k}\right)+(y-1)\left(E_{j j} \otimes E_{l l}\right)\right)^{-1}=I_{m_{1} m_{2}}+\left(x^{-1}-1\right)\left(E_{i i} \otimes E_{k k}\right)+\left(y^{-1}-1\right)\left(E_{j j} \otimes E_{l l}\right)
$$

and suppose $f\left(I_{m_{1} m_{2}}\right)=A, f\left(E_{i i} \otimes E_{k k}\right)=B_{1}$ and $f\left(E_{j j} \otimes E_{l l}\right)=B_{2}$ then

$$
\begin{align*}
& \left(A+(x-1) B_{1}+(y-1) B_{2}\right)\left(A+\left(x^{-1}-1\right) B_{1}+\left(y^{-1}-1\right) B_{2}\right)=I_{n} \tag{7}\\
& \left(A+\left(x^{-1}-1\right) B_{1}+\left(y^{-1}-1\right) B_{2}\right)\left(A+(x-1) B_{1}+(y-1) B_{2}\right)=I_{n} \tag{8}
\end{align*}
$$

combine the above equations

$$
\left(y x^{-1}-y-x^{-1}-x y^{-1}+x+y^{-1}\right)\left(B_{1} B_{2}-B_{2} B_{1}\right)=0 .
$$

Because of the arbitrariness of x, y, we get $B_{1} B_{2}=B_{2} B_{1}$. With the equation (7) or (8), it can imply that

$$
\begin{gathered}
\left(x+x^{-1}-2\right) A B_{1}+\left(y+y^{-1}-2\right) A B_{2}+\left(2-x-x^{-1}\right) B_{1}^{2}+\left(2-y-y^{-1}\right) B_{2}^{2} \\
+\left(y x^{-1}-y^{-1}-x+1+x y^{-1}-x^{-1}-y+1\right) B_{1} B_{2}=0 .
\end{gathered}
$$

According to Lemma 6, we get that $B_{1}^{2}=A B_{1}$ and $B_{2}^{2}=A B_{2}$. Then $\left(y x^{-1}-y^{-1}-x+1+x y^{-1}-x^{-1}-y+1\right) B_{1} B_{2}=0$. Because of the arbitrariness of x, y, we have $B_{1} B_{2}=0$. And the proof is completed.

3. Results

Theorem 1 A linear map $f: H_{m_{1} m_{2}} \rightarrow H_{n}$ preserves inverses of tensor products of Hermite matrices if and only if f is one of the following two forms:
(1) When $m_{1} m_{2}=n$, there exists a unitary matrix $P \in M_{n}$, a natural number $\lambda \in\{-1,1\}$ and a canonical map π on $H_{m_{1} m_{2}}$ such that $f(X)=\lambda P \pi(X) P^{*}, \forall X \in H_{m_{1} m_{2}}$;
(2) When $m_{1} m_{2}<n$, there exist natural numbers $p_{i}, q_{i}(i=1,2,3,4)$, a unitary matrix $P \in M_{n}$ and canonical maps $\pi_{i}(i=1,2,3,4)$ on $H_{m_{1} m_{2}}$ such that

$$
f(X)=P\left(\left(\oplus_{i=1}^{4} \pi_{i}(X) \otimes I_{p_{i}}\right) \oplus\left(\underset{i=1}{4} \pi_{i}(X) \otimes\left(-I_{q_{i}}\right)\right)\right) P^{*}, \forall X \in H_{m_{1} m_{2}},
$$

where I_{0} means that there is not the item which corresponds to it in driect sum.
Proof. The sufficiency is obvious, we only need to prove the necessity.
If $m_{1} m_{2}>n$, we can conclude that $f=0$, which is contradicted with f being a linear map preserving inverses. Hence, $m_{1} m_{2} \leq n$.
When $m_{1} m_{2} \leq n$, obviously we obtain that $f\left(I_{m_{1} m_{2}}\right)^{-1}=f\left(I_{m_{1} m_{2}}^{-1}\right)=f\left(I_{m_{1} m_{2}}\right)$,i.e., $f\left(I_{m_{1} m_{2}}\right)^{3}=f\left(I_{m_{1} m_{2}}\right)$. Applying $f\left(I_{m_{1} m_{2}}\right) \in H_{n}$ and Lemma 3, there is a unitary matrix $P \in M_{n}$ and two natural numbers t_{1}, t_{2}, such that $f\left(I_{m_{1} m_{2}}\right)=$ $\operatorname{Pdiag}\left(I_{t_{1}},-I_{t_{2}}\right) P^{-1}$ and $t_{1}+t_{2}=n$. Let $f\left(E_{i i} \otimes E_{k k}\right)=P\left[\begin{array}{ll}A_{i j} & C_{i j} \\ D_{i j} & B_{i j}\end{array}\right] P^{-1}$, where $A_{i j} \in H_{t_{1}}, B_{i j} \in H_{t_{2}}$. Using Lemma 6, we have $f\left(E_{i i} \otimes E_{k k}\right)=P\left[\begin{array}{cc}A_{i j} & 0 \\ 0 & B_{i j}\end{array}\right] P^{-1}, A_{i j}=A_{i j}^{2}$ and $-B_{i j}=B_{i j}^{2}$. According to Lemma 7, let

$$
f\left(\left(a D_{i}+b \mathbf{i} D_{i j}^{-}\right) \otimes\left(c D_{k}+d D_{k l}^{+}\right)\right)=P\left[\begin{array}{cc}
C_{i j k l}^{1} & 0 \\
0 & D_{i j k l}^{1}
\end{array}\right] P^{-1}
$$

$$
\begin{aligned}
& f\left(\left(a D_{i}+b D_{i j}^{+}\right) \otimes\left(c D_{k}+d \mathbf{i} D_{k l}^{-}\right)\right)=P\left[\begin{array}{cc}
C_{i j k l}^{2} & 0 \\
0 & D_{i j k l}^{2}
\end{array}\right] P^{-1} \\
& f\left(\left(a D_{i j}^{+}+b \mathbf{i} D_{i j}^{-}\right) \otimes\left(c D_{k l}^{+}+d \mathbf{i} D_{k l}^{-}\right)\right)=P\left[\begin{array}{cc}
C_{i j k l}^{3} & 0 \\
0 & D_{i j k l}^{3}
\end{array}\right] P^{-1}
\end{aligned}
$$

According to the properties of f, we can construct two maps $f_{1}: H_{m_{1} m_{2}} \rightarrow H_{t_{1}}$ and $f_{2}: H_{m_{1} m_{2}} \rightarrow H_{t_{2}}$. For any $X_{1} \otimes X_{2} \in H_{m_{1} m_{2}}$, suppose

$$
\begin{aligned}
f_{1}\left(X_{1} \otimes X_{2}\right) & =\sum x_{i j k l}^{1} C_{i j k l}^{1}+\sum x_{i j k l}^{2} C_{i j k l}^{2}+\sum x_{i j k l}^{3} C_{i j k l}^{3} \\
-f_{2}\left(X_{1} \otimes X_{2}\right) & =\sum x_{i j k l}^{1} D_{i j k l}^{1}+\sum x_{i j k l}^{2} D_{i j k l}^{2}+\sum x_{i j k l}^{3} D_{i j k l}^{3}
\end{aligned}
$$

Let $F\left(X_{1} \otimes X_{2}\right)=P^{-1} f\left(X_{1} \otimes X_{2}\right) P$, then

$$
\begin{equation*}
F\left(X_{1} \otimes X_{2}\right)=f_{1}\left(X_{1} \otimes X_{2}\right) \oplus\left(-f_{2}\left(X_{1} \otimes X_{2}\right)\right) \tag{9}
\end{equation*}
$$

and for any invertible $X_{1} \otimes X_{2} \in H_{m_{1} m_{2}}$, we have

$$
f\left(X_{1} \otimes X_{2}\right)^{-1}=P\left(f_{1}\left(X_{1} \otimes X_{2}\right)^{-1} \oplus\left(-f_{2}\left(X_{1} \otimes X_{2}\right)\right)^{-1}\right) P^{-1}
$$

and

$$
f\left(\left(X_{1} \otimes X_{2}\right)^{-1}\right)=P\left(f_{1}\left(\left(X_{1} \otimes X_{2}\right)^{-1}\right) \oplus\left(-f_{2}\left(X_{1} \otimes X_{2}\right)^{-1}\right)\right) P^{-1}
$$

So f_{1} and f_{2} preserve inverses of tensor products of Hermite matrices as f. Let $X_{1} \otimes X_{2}=I_{m_{1} m_{2}}$, then $F\left(I_{m_{1} m_{2}}\right)=$ $\operatorname{diag}\left(I_{t_{1}},-I_{t_{2}}\right)=f_{1}\left(I_{m_{1} m_{2}}\right) \oplus\left(-f_{2}\left(I_{m_{1} m_{2}}\right)\right)$. The following proof shows that f_{1} and f_{2} are linear maps preserving idmpotence of tensor products of matrices.
For any idempotent matrices $X_{3} \otimes X_{4} \in H_{m_{1} m_{2}}$, there is a unitary matrix T such that $X_{3} \otimes X_{4}=T\left[\begin{array}{cc}I_{v} & 0 \\ 0 & 0\end{array}\right] T^{-1}$. Suppose $g_{1}\left(X_{3} \otimes X_{4}\right)=f_{1}\left(T\left(X_{3} \otimes X_{4}\right) T^{-1}\right)$.Then we derive that g_{1} is a linear map preserving inverses of tensor products of matrices and $g_{1}\left(I_{m_{1} m_{2}}\right)=f_{1}\left(T I_{m_{1} m_{2}} T^{-1}\right)=f_{1}\left(I_{m_{1} m_{2}}\right)=I_{t_{1}}$. According to Lemma 6, we have that $g_{1}\left(I_{m_{1} m_{2}}\right) g_{1}\left(E_{i i} \otimes E_{k k}\right)=g_{1}\left(E_{i i} \otimes E_{k k}\right)^{2}$,i.e., $g_{1}\left(E_{i i} \otimes E_{k k}\right)=g_{1}\left(E_{i i} \otimes E_{k k}\right)^{2}$. With the Lemma 8 , it can imply that

$$
g_{1}\left[\begin{array}{cc}
I_{v} & 0 \\
0 & 0
\end{array}\right]=g_{1}^{2}\left[\begin{array}{cc}
I_{v} & 0 \\
0 & 0
\end{array}\right],
$$

and then we have that $f_{1}^{2}\left(X_{3} \otimes X_{4}\right)=f_{1}\left(X_{3} \otimes X_{4}\right)$, which is said that f_{1} is a linear map preserving idmpotence and satisfies $f_{1}\left(I_{m_{1} m_{2}}\right)=I_{t_{1}}$. Using Lemma 5, we derive that f_{1} is one of the following two forms for any $X \in H_{m_{1} m_{2}}$:
(1)When $m_{1} m_{2}=t_{1}$, there exists a unitary matrix $P_{1} \in M_{t_{1}}$ and a canonical map π_{1} on $H_{m_{1} m_{2}}$ such that $f_{1}(X)=$ $P_{1} \pi_{1}(X) P_{1}^{*}$;
(2)When $m_{1} m_{2}<t_{1}$, there exist natural numbers $p_{i}(i=1,2,3,4)$, a unitary matrix $P_{1} \in M_{t_{1}}$ and canonical maps $\pi_{i}(i=1,2,3,4)$ on $H_{m_{1} m_{2}}$ such that

$$
f_{1}(X)=P_{1}\left(\underset{i=1}{\oplus} \pi_{i}(X) \otimes I_{p_{i}}\right) P_{1}^{*},
$$

where I_{0} means that there is not the item which corresponds to it in driect sum.
With the same proof method as above, we derive that f_{2} is also the linear map preserving idmpotence, and has one of the following two forms for any $X \in H_{m_{1} m_{2}}$.
(1)When $m_{1} m_{2}=t_{2}$, there exists a unitary matrix $P_{2} \in M_{t_{2}}$ and a canonical map π_{2} on $H_{m_{1} m_{2}}$ such that $f_{2}(X)=$ $P_{2} \pi_{2}(X) P_{2}^{*}$;
(2)When $m_{1} m_{2}<t_{2}$, there exist natural numbers $q_{i}(i=1,2,3,4)$, a unitary matrix $P_{2} \in M_{t_{2}}$ and canonical maps $\pi_{i}(i=1,2,3,4)$ on $H_{m_{1} m_{2}}$ such that

$$
f_{2}(X)=P_{2}\left(\underset{i=1}{\left.\stackrel{4}{\oplus} \pi_{i}(X) \otimes I_{q_{i}}\right) P_{2}^{*}, ~ \text {, }}\right.
$$

where I_{0} means that there is not the item which corresponds to it in driect sum.
Combining with (9) , the Theorem1 can be proved.

Funding

This paper is supported by " the Fundamental Research Funds for the Central Universities" (Grant No. 2572021BC03).

References

Lim, M. -H. (2014). A Note on Linear Preservers of Certain Ranks of Tensor Products of Matrices. Linear and Multilinear Algebra, 63(7), 1442-1447. https://doi.org/http://dx.doi.org/10.1080/03081087.2014.945445
Huang, Z., Shi, S., \& Sze, N.-S. (2016). Linear Rank Preservers on Tensor Products of Rank One Matrices. Linear Algebra and its Application, 508, 255-271. http://dx.doi.org/10.1016/j.laa.2016.07.024
Duffner, M. A., \& da Cruz, H. F. (2016). Rank Nonincreasing Linear Maps Preserving the Determinant of Tensor Product of Matrices. Linear Algebra and its Application, 510, 186-191. http://dx.doi.org/10.1016/j.laa.2016.08.021
Zheng, B., Xu, J., \& Fošner, A. (2015). Linear maps preserving idempotents of tensor products of matrices. Linear Algebra and Its Applications, 470, 25-39. https://doi.org/10.1016/j.laa.2014.01.036
Deng, L., Zheng, K. L., \& Xu, J. L. (2021). Linear maps preserving idmpotence of tensor products of symmetric matrices. Journal of Natural Sciences, Harbin Normal University, 37(2), 1-5. https://doi.org/10.3969/j.issn.10005617.2021.02.001

Yan, L. (2022). Characterization of linear Preserver Problems on spaces of tensor products of matrices. (Master's thesis, Northeast Forestry University). https://doi.org/10.27009/d.cnki.gdblu.2022.000131

Xu, J. L. (2016). Linear Preserver Problems on spaces of tensor products of matrices (Phd thesis, Harbin Institute of Technology). https://doi.org/10.7666/d.D01102118
Zhang, X., \& Cao, C. G. (2001). Additive group homomorphism preserving invariant. Harbin, Harbin Press.
Sheng, Y. Q., Cao, C. G., \& Tang, X. M. (2020). Further Results on Linear Maps PreservingIdempotence of Tensor Products of Matrices. Journal of Natural Science of Heilongjiang University, 37(2), 160-166. https://doi.org/10.13482/j.is sn1001-7011.2019.01.202

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

