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Abstract

Let C be a complex field, Hm1m2 be a linear space of tensor products of Hermite matrices Hm1⊗Hm2 over C , and suppose
m1, m2≥2 are positive integers. A linear map f : Hm1m2 → Hn is called a linear inverse preserver if f (X1 ⊗ X2)−1 =

f
(
(X1 ⊗ X2)−1

)
for arbitrary invertible matrix X1 ⊗ X2 ∈ Hm1m2 .The aim of this paper is to characterize the linear maps

preserving inverses of tensor products of Hermite matrices.
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1. Introduction

Let In be the n × n identity matrix, Gn be a set of all n × n invertible matrices, PT be the transpose matrix of P , and
suppose P∗ is the conjugate transpose matrix of P. We denote by Mn and Hn the algebra of all n × n matrices and Hermite
matrices over C , and by Mm1···ml and Hm1···ml the linear space of tensor products of matrices Mm1 ⊗ · · · ⊗ Mml and Hermite
matrices Hm1 ⊗ · · · ⊗ Hml . Let P2

n and P3
n be subspace of Mn consisting of all idempotent and tripotent matrices.

In 2012, Li Zhiguang combined the linear preserver problems with tensor products of matrices in the context of quantum
theory, which not only provided a new direction for the study of the preserver problems, but also had potential application
value for the future development of quantum information science. As for the study of linear preserver problems of tensor
products of matrices, referred to references (Lim, 2014; Huang, Shi &Sze, 2016; Duffner &da Cruz, 2016).

Changing the set of preserving functions is one of the basic ideas in the study of preserver problems. Zheng, Xu and
Fošner in 2015 described the linear maps preserving idmpotence of tensor products of matrices (Zheng, Xu&Fošner,
2015). Deng, Zheng and Xu in 2021 changed the set of the linear maps from tensor products of matrices to the tensor
products of symmetric matrices( Deng, Zheng&Xu , 2021). Yan in 2022 described the linear maps preserving inverses
tensor products of matrices (Yan, 2022 ). Based on it, this paper changes the set of linear maps from the tensor products
of matrices to the tensor products of Hermite matrices.

Generally speaking, linear preservers of inverses come down to linear preservers of idempotence. Xu in 2016 described
a linear map that preserves the idempotence of the tensor products of Hermite matrices ( Xu, 2016 ), and the result is as
follows: A linear map f : Hm1···ml → Hn (m1 · · ·ml ≥ n) is called an idempotent preserver of tensor products of matrices if
and only if f = 0 or there exists a unitary matrix P ∈ Mn and a canonical map π on Hm1···ml such that f (X) = Pπ (X) P∗

for any X ∈ Hm1···ml when m1 · · ·ml = n .

The purpose of this paper is to describe the linear maps preserving inverses of tensor products of Hermite matrices as
well as the idempotent preserver of tensor products of Hermite matrices with the restriction of m1 · · ·ml ≥ n is removed
compared with reference( Xu, 2016 ).It enriches the preservation problem in Hermite matrices space and provides a more
perfect mathematical theory foundation for quantum information science.

Because of the complexity and arbitrariness of the matrices, We need to do a lot of calculations. In order to solve this
problem, in the following proofs, we only consider the case of l = 2 , the case of l > 2 are similar. In addition, the
following concepts are needed for this article: A linear map π on Hm1···ml is called canonical, if it satisfies

π (X1 ⊗ · · · ⊗ Xl) = τ1 (X1) ⊗ · · · ⊗ τl (Xl) ,

with τi (Xi) (i = 1, · · · , l) = Xi or XT
i . A linear map is called generalized canonical, if it satisfies

σ (X1 ⊗ · · · ⊗ Xl) =

( s
⊕

i=1
πi (X1 ⊗ · · · ⊗ Xl) ⊗ Ipi

)
⊕ 0,
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where πi are the canonical maps, pi (i = 1, · · · , s) are natural numbers, and I0 means that there is not the item which
corresponds to it in driect sum.

2. Preliminary Result

Before proving the theorem, we need the following lemmas.

Lemma 1 Let U ∈ Mn be an invertible matrix, if UX = XU for any X ∈ Hn , then U = λI with λ , 0 .

Proof. TakeX = Eii (i = 1, · · · , n). UEii = EiiU shows that U is a diagonal matrix. Then take X = Ei j + E ji and
X = i

(
Ei j − E ji

)
(1 ≤ i < j ≤ n), and then we get that U

(
Ei j + E ji

)
=

(
Ei j + E ji

)
Uand Ui

(
Ei j − E ji

)
= i

(
Ei j − E ji

)
U.

The Lemma1 can be proved.

Lemma 2( Zhang&Cao, 2001 ) If A ∈ P2
n ,there exists an invertible matrix Q and a non-negative integer r such that

A = Qdiag (Ir, 0n−r) Q−1,

where rankA = r .

Lemma 3( Zhang&Cao, 2001 ) If A ∈ P3
n , there exists an invertible matrix Q and non-negative integers p, q, s such that

A = Qdiag
(
Ip,−Iq, 0s

)
Q−1,

where rankA = p + q , p = rank (A + In) + rank (A) − n and p + q + s = n.

Lemma 4( Sheng&Tang, 2020 ) Let F be a field of Ch , 2 . A linear map ϕ : Mm1···ml (F) → Mn (F) (m1 · · ·ml < n)
preserves idempotence of tensor products of matrices if and only if there exists an invertible matrix Q ∈ Mn (F) and a
generalized canonical map σ on Mm1···ml (F) such that

ϕ (X) = Qσ (X) Q−1,∀X ∈ Mm1···ml (F) .

Lemma 5 A linear map ϕ : Hm1···ml → Hn (m1 · · ·ml < n) preserves idempotence of tensor products of matrices if and
only if there exists a unitary matrix T ∈ Mn and a generalized canonical map σ on Hm1···ml such that

ϕ (X) = Tσ (X) T ∗,∀X ∈ Hm1···ml .

Proof. First, we give the proof of the sufficiency part of the lemma : If X2 = X for any X = X1 ⊗ · · · ⊗ Xl ∈ Hm1···ml , then

ϕ (X)2 = Tσ (X) T ∗Tσ (X) T ∗ = Tσ (X)2 T ∗.

Because
(X1 ⊗ · · · ⊗ Xl)2 = X2

1 ⊗ · · · ⊗ X2
l = X1 ⊗ · · · ⊗ Xl,

we have (
π (X1 ⊗ · · · ⊗ Xl) ⊗ Ipi

)2
= τ1 (X1)2 ⊗ · · · ⊗ τl (Xl)2 ⊗ I2

pi
= τ1 (X1) ⊗ · · · ⊗ τl (Xl) ⊗ Ipi ,

and by the definitions of the canonical maps and generalized canonical maps, we have σ (X)2 = σ (X) ,i.e., ϕ (X)2 = ϕ (X) .
Then the sufficiency part is established and the necessity part is proved below.

If ϕ = 0 , the necessity is obvious.

If ϕ , 0 , let ϕ be linearly extended into ϕ̃ : Mm1···ml → Mn . Since ChC = 0 , applying the Lemma 4, we know that there
exists an invertible matrix Q ∈ Mn and a generalized canonical map σ on Mm1···ml , such that

ϕ̃ (X) = Qσ (X) Q−1,∀X ∈ Mm1···ml .

Since ϕ̃
(
Hm1···ml

)
= ϕ

(
Hm1···ml

)
∈ Hn , we derive that(

Qσ (X) Q−1
)∗

= Qσ (X) Q−1,∀X ∈ Hm1···ml ,

that is
σ (X) Q∗Q = Q∗Qσ (X) ,∀X ∈ Hm1···ml .

Since σ (X) ∈ Hn and Q∗Q ∈ Gn ,we have Q∗Q = λI , λ , 0 according to Lemma 1. Because Q is an invertible matrix,
we get |Q∗Q| = |Q∗| |Q| = λn . Suppose |Q∗| = a + bi , |Q| = a − bi . Then λ > 0 . Let T = λ−

1
2 Q , then T ∗T = I. So T is a

unitary matrix, and we derive that
ϕ̃ (X) = Tσ (X) T ∗,∀X ∈ Mm1···ml ,
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ϕ (X) = Tσ (X) T ∗,∀X ∈ Hm1···ml .

Then Lemma 5 can be proved.

Lemma 6 Assuming f : Hm1m2 → Hn is a linear map preserving inverses of tensor products of Hermite matrices, then

f
(
Im1m2

)
f (Eii ⊗ Ekk) = f (Eii ⊗ Ekk) f

(
Im1m2

)
= f (Eii ⊗ Ekk)2 ,

where i ∈ [1,m1] and k ∈ [1,m2] .

Proof. Since I−1
m1m2

= Im1m2 , we have f
(
Im1m2

)−1
= f

(
Im1m2

)
and f

(
Im1m2

)2
= In . So for any x , 0, x , 1(

Im1m2 + (x − 1) (Eii ⊗ Ekk)
)−1

= Im1m2 +
(
x−1 − 1

)
(Eii ⊗ Ekk) ,

then
f
(
Im1m2 + (x − 1) (Eii ⊗ Ekk)

)
f
(
Im1m2 +

(
x−1 − 1

)
(Eii ⊗ Ekk)

)
= In, (1)

f
(
Im1m2 +

(
x−1 − 1

)
(Eii ⊗ Ekk)

)
f
(
Im1m2 + (x − 1) (Eii ⊗ Ekk)

)
= In, (2)

combine equation (1) and (2) (
x−1 − 1

) (
f
(
Im1m2

)
f (Eii − Ekk) − f (Eii − Ekk) f

(
Im1m2

))
= 0.

Due to the arbitrariness of x , it follows that

f
(
Im1m2

)
f (Eii − Ekk) = f (Eii − Ekk) f

(
Im1m2

)
, (3)

and put (3) into equation (1) or (2)(
x−1 + x − 2

) (
f
(
Im1m2

)
f (Eii − Ekk) − f (Eii − Ekk)2

)
= 0.

Because of the arbitrariness of x , the Lemma 6 can be proved.

Lemma 7 Assuming f : Hm1m2 → Hn is a linear map preserving inverses of tensor products of Hermite matrices, and let
Eii = Di , Ekk = Dk , Ei j + E ji = D+

i j , Ei j − E ji = D−i j , Ekl + Elk = D+
kl ,Ekl − Elk = D−kl , where i, j ∈ [1,m1] , k, l ∈ [1,m2] ,

i , j and k , l , then we have that

f
(
Im1m2

)
f
((

aDi + biD−i j

)
⊗

(
cDk + dD+

kl

))
= f

((
aDi + biD−i j

)
⊗

(
cDk + dD+

kl

))
f
(
Im1m2

)
, (4)

f
(
Im1m2

)
f
((

aDi + bD+
i j

)
⊗

(
cDk + diD−kl

))
= f

((
aDi + bD+

i j

)
⊗

(
cDk + diD−kl

))
f
(
Im1m2

)
, (5)

f
(
Im1m2

)
f
((

aD+
i j + biD−i j

)
⊗

(
cD+

kl + diD−kl

))
= f

((
aD+

i j + biD−i j

)
⊗

(
cD+

kl + diD−kl

))
f
(
Im1m2

)
, (6)

where a, b, c, d ∈ {0, 1}, a , b and c , d .

Proof. First, we give the proof of the equation (4) . For any x , ±1 ,(
Im1m2 +

x
1 + x

((
aDi + biD−i j

)
⊗

(
cDk + dD+

kl

))
−

x
1 + x

((
Di + bD j

)
⊗ (Dk + dDl)

))−1

= Im1m2 −
x

1 − x

((
aDi + biD−i j

)
⊗

(
cDk + dD+

kl

))
+

x
1 − x

((
Di + bD j

)
⊗ (Dk + dDl)

)
,

and suppose f
(
Im1m2

)
= A, f

((
aDi + biD−i j

)
⊗

(
cDk + dD+

kl

))
= C, f

((
Di + bD j

)
⊗ (Dk + dDl)

)
= B , and then(

A +
x

1 + x
C −

x
1 + x

B
) (

A −
x

1 − x
C +

x
1 − x

B
)

=

(
A −

x
1 − x

C +
x

1 − x
B
) (

A +
x

1 + x
C −

x
1 + x

B
)
.

According to Lemma 6, we get AB = BA . So it follows that 2x (AC −CA) = 0 . As the arbitrariness of x , the equation
(4) is proved. Evidently(

Im1m2 +
x

1 + x

((
aDi + bD+

i j

)
⊗

(
cDk + diD−kl

))
−

x
1 + x

((
Di + bD j

)
⊗ (Dk + dDl)

))−1

= Im1m2 −
x

1 − x

((
aDi + bD+

i j

)
⊗

(
cDk + diD−kl

))
+

x
1 − x

((
Di + bD j

)
⊗ (Dk + dDl)

)
,
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Im1m2 +

x
1 + x

((
aD+

i j + biD−i j

)
⊗

(
cD+

kl + diD−kl

))
−

x
1 + x

((
Di + D j

)
⊗ (Dk + Dl)

))−1

= Im1m2 −
x

1 − x

((
aD+

i j + biD−i j

)
⊗

(
cD+

kl + diD−kl

))
+

x
1 − x

((
Di + D j

)
⊗ (Dk + Dl)

)
,

and then the above formulas can be used to prove the validity of equations(5) and (6) through direct calculation.

Lemma 8 Assuming f : Hm1m2 → Hn is a linear map preserving inverses of tensor products of Hermite matrices, then

f (Eii ⊗ Ekk) f
(
E j j ⊗ Ell

)
= f

(
E j j ⊗ Ell

)
f (Eii ⊗ Ekk) = 0,

where i, j ∈ [1,m1] , k, l ∈ [1,m2] , i , j and k , l .

Proof. For any x, y , 0 , x, y , 1(
Im1m2 + (x − 1) (Eii ⊗ Ekk) + (y − 1)

(
E j j ⊗ Ell

))−1
= Im1m2 +

(
x−1 − 1

)
(Eii ⊗ Ekk) +

(
y−1 − 1

) (
E j j ⊗ Ell

)
,

and suppose f
(
Im1m2

)
= A , f (Eii ⊗ Ekk) = B1 and f

(
E j j ⊗ Ell

)
= B2 then

(A + (x − 1) B1 + (y − 1) B2)
(
A +

(
x−1 − 1

)
B1 +

(
y−1 − 1

)
B2

)
= In, (7)(

A +
(
x−1 − 1

)
B1 +

(
y−1 − 1

)
B2

)
(A + (x − 1) B1 + (y − 1) B2) = In, (8)

combine the above equations (
yx−1 − y − x−1 − xy−1 + x + y−1

)
(B1B2 − B2B1) = 0.

Because of the arbitrariness of x, y , we get B1B2 = B2B1 . With the equation (7) or (8) , it can imply that(
x + x−1 − 2

)
AB1 +

(
y + y−1 − 2

)
AB2 +

(
2 − x − x−1

)
B2

1 +
(
2 − y − y−1

)
B2

2

+
(
yx−1 − y−1 − x + 1 + xy−1 − x−1 − y + 1

)
B1B2 = 0.

According to Lemma 6, we get that B2
1 = AB1 and B2

2 = AB2 . Then
(
yx−1 − y−1 − x + 1 + xy−1 − x−1 − y + 1

)
B1B2 = 0.

Because of the arbitrariness of x, y , we have B1B2 = 0 . And the proof is completed.

3. Results

Theorem 1 A linear map f : Hm1m2 → Hn preserves inverses of tensor products of Hermite matrices if and only if f is
one of the following two forms:
(1) When m1m2 = n , there exists a unitary matrix P ∈ Mn , a natural number λ ∈ {−1, 1} and a canonical map π on Hm1m2

such that f (X) = λPπ (X) P∗ , ∀X ∈ Hm1m2 ;
(2) When m1m2 < n , there exist natural numbers pi, qi (i = 1, 2, 3, 4) , a unitary matrix P ∈ Mn and canonical maps
πi (i = 1, 2, 3, 4) on Hm1m2 such that

f (X) = P
(( 4
⊕

i=1
πi (X) ⊗ Ipi

)
⊕

( 4
⊕

i=1
πi (X) ⊗

(
−Iqi

)))
P∗,∀X ∈ Hm1m2 ,

where I0 means that there is not the item which corresponds to it in driect sum.

Proof. The sufficiency is obvious, we only need to prove the necessity.

If m1m2 > n , we can conclude that f = 0 , which is contradicted with f being a linear map preserving inverses. Hence,
m1m2 ≤ n .

When m1m2 ≤ n , obviously we obtain that f
(
Im1m2

)−1
= f

(
I−1
m1m2

)
= f

(
Im1m2

)
,i.e., f

(
Im1m2

)3
= f

(
Im1m2

)
. Applying

f
(
Im1m2

)
∈ Hn and Lemma 3, there is a unitary matrix P ∈ Mn and two natural numbers t1, t2 , such that f

(
Im1m2

)
=

Pdiag
(
It1 ,−It2

)
P−1 and t1 + t2 = n . Let f (Eii ⊗ Ekk) = P

[
Ai j Ci j

Di j Bi j

]
P−1 , where Ai j ∈ Ht1 , Bi j ∈ Ht2 . Using Lemma 6,

we have f (Eii ⊗ Ekk) = P
[
Ai j 0
0 Bi j

]
P−1 , Ai j = A2

i j and −Bi j = B2
i j . According to Lemma 7, let

f
((

aDi + biD−i j

)
⊗

(
cDk + dD+

kl

))
= P

[
C1

i jkl 0
0 D1

i jkl

]
P−1,
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f
((

aDi + bD+
i j

)
⊗

(
cDk + diD−kl

))
= P

[
C2

i jkl 0
0 D2

i jkl

]
P−1,

f
((

aD+
i j + biD−i j

)
⊗

(
cD+

kl + diD−kl

))
= P

[
C3

i jkl 0
0 D3

i jkl

]
P−1.

According to the properties of f , we can construct two maps f1 : Hm1m2 → Ht1 and f2 : Hm1m2 → Ht2 . For any
X1 ⊗ X2 ∈ Hm1m2 , suppose

f1 (X1 ⊗ X2) =
∑

x1
i jklC

1
i jkl +

∑
x2

i jklC
2
i jkl +

∑
x3

i jklC
3
i jkl,

− f2 (X1 ⊗ X2) =
∑

x1
i jklD

1
i jkl +

∑
x2

i jklD
2
i jkl +

∑
x3

i jklD
3
i jkl.

Let F (X1 ⊗ X2) = P−1 f (X1 ⊗ X2) P, then

F (X1 ⊗ X2) = f1 (X1 ⊗ X2) ⊕ (− f2 (X1 ⊗ X2)) , (9)

and for any invertible X1 ⊗ X2 ∈ Hm1m2 , we have

f (X1 ⊗ X2)−1 = P
(

f1 (X1 ⊗ X2)−1 ⊕ (− f2 (X1 ⊗ X2))−1
)

P−1,

and
f
(
(X1 ⊗ X2)−1

)
= P

(
f1

(
(X1 ⊗ X2)−1

)
⊕

(
− f2 (X1 ⊗ X2)−1

))
P−1.

So f1 and f2 preserve inverses of tensor products of Hermite matrices as f . Let X1 ⊗ X2 = Im1m2 ,then F
(
Im1m2

)
=

diag
(
It1 ,−It2

)
= f1

(
Im1m2

)
⊕

(
− f2

(
Im1m2

))
. The following proof shows that f1 and f2 are linear maps preserving idmpo-

tence of tensor products of matrices.

For any idempotent matrices X3 ⊗ X4 ∈ Hm1m2 , there is a unitary matrix T such that X3 ⊗ X4 = T
[
Iv 0
0 0

]
T−1 .

Suppose g1 (X3 ⊗ X4) = f1
(
T (X3 ⊗ X4) T−1

)
.Then we derive that g1 is a linear map preserving inverses of tensor

products of matrices and g1
(
Im1m2

)
= f1

(
T Im1m2 T−1

)
= f1

(
Im1m2

)
= It1 . According to Lemma 6, we have that

g1
(
Im1m2

)
g1 (Eii ⊗ Ekk) = g1 (Eii ⊗ Ekk)2 ,i.e., g1 (Eii ⊗ Ekk) = g1 (Eii ⊗ Ekk)2. With the Lemma 8, it can imply that

g1

[
Iv 0
0 0

]
= g2

1

[
Iv 0
0 0

]
,

and then we have that f 2
1 (X3 ⊗ X4) = f1 (X3 ⊗ X4) , which is said that f1 is a linear map preserving idmpotence and

satisfies f1
(
Im1m2

)
= It1 . Using Lemma 5, we derive that f1 is one of the following two forms for any X ∈ Hm1m2 :

(1)When m1m2 = t1, there exists a unitary matrix P1 ∈ Mt1 and a canonical map π1 on Hm1m2 such that f1 (X) =

P1π1 (X) P∗1;

(2)When m1m2 < t1, there exist natural numbers pi (i = 1, 2, 3, 4) , a unitary matrix P1 ∈ Mt1 and canonical maps
πi (i = 1, 2, 3, 4) on Hm1m2 such that

f1 (X) = P1

( 4
⊕

i=1
πi (X) ⊗ Ipi

)
P∗1,

where I0 means that there is not the item which corresponds to it in driect sum.

With the same proof method as above ,we derive that f2 is also the linear map preserving idmpotence, and has one of the
following two forms for any X ∈ Hm1m2 .

(1)When m1m2 = t2, there exists a unitary matrix P2 ∈ Mt2 and a canonical map π2 on Hm1m2 such that f2 (X) =

P2π2 (X) P∗2;

(2)When m1m2 < t2, there exist natural numbers qi (i = 1, 2, 3, 4) , a unitary matrix P2 ∈ Mt2 and canonical maps
πi (i = 1, 2, 3, 4) on Hm1m2 such that

f2 (X) = P2

( 4
⊕

i=1
πi (X) ⊗ Iqi

)
P∗2,

where I0 means that there is not the item which corresponds to it in driect sum.

Combining with (9) , the Theorem1 can be proved.
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