Convergence for an Immersed Finite Volume Method for Elliptic and Parabolic Interface Problems
- Champike Attanayake
- Deepthika Senaratne
Abstract
In this article we analyze an immersed interface finite volume method for second order elliptic and parabolic interface problems. We show the optimal convergence of the elliptic interface problem in L^2 and energy norms.
For the parabolic interface problem, we prove the optimal order in L^2 and energy norms for piecewise constant and variable diffusion coefficients respectively. Furthermore, for the elliptic interface problem, we demonstrate super convergence at element nodes when the diffusion coefficient is a piecewise constant. Numerical examples are also provided to confirm the optimal error estimates.
- Full Text: PDF
- DOI:10.5539/jmr.v15n2p19
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org