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Abstract

In this article we analyze an immersed interface finite volume method for second order elliptic and parabolic interface
problems. We show the optimal convergence of the elliptic interface problem in L2 and energy norms. For the parabolic
interface problem, we prove the optimal order in L2 and energy norms for piecewise constant and variable diffusion
coefficients respectively. Furthermore, for the elliptic interface problem, we demonstrate super convergence at element
nodes when the diffusion coefficient is a piecewise constant. Numerical examples are also provided to confirm the optimal
error estimates.
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1. Introduction

Elliptic and parabolic interface problems with discontinuous coefficients appear in a variety of disciplines, such as elec-
tromagnetism, fluid dynamics and material science. These problems can be solved by standard finite element methods
(FEM) using carefully tailored meshes to resolve the interface. If the grid lines of the fitted finite element mesh are not
conformed with the interface, the solution has low global regularity due to the discontinuity of the coefficients across
the interface. However, high quality mesh generation is difficult and has more computational cost for some complicated
geometries and interfaces. To overcome the limitations of standard fitted mesh methods many numerical methods have
been developed in the past several decades.

One of the more commonly used such a method is the immersed finite element (IFE) method (Li, Z., 1998) based on
Cartesian meshes. The method uses special basis functions for the interface elements while allowing the interface to
immerse in the regular elements. The local interface basis functions are designed to satisfy the jump conditions at the
interface while their meshes do not have to be conformed with the interface (Li, Z., 2011; Li, Z., Lin, T., Wu, X., 2003;
Li, Z., Ito, K., 2006). The solution of the one dimensional interface problem is second order accurate in the infinity norm
(Li, Z., 2011). Li, et al. (Li, Z., Lin, T., Rogers, R.C, 2004) analyzed the second order elliptic interface problem and
their results showed IFE has approximating capability similar to that of standard FEM based on body fitting partitions.
The Convergence of the IFE method for semi-linear parabolic interface problem was analyzed by Attanayake, et al.
(Attanayake, C, Senaratne, D., 2011) and their results prove that the convergence of the semi-discrete solution was of the
optimal order in L2 and energy norms and the fully discrete scheme based on the backward Euler method has optimal
order in L2 norm. However, some numerical results demonstrate that IFE methods have larger point-wise error over the
interface elements.

Finite volume method (FVM) is another numerical method based on Cartesian meshes. Since the method inherits local
conservation of physical quantities such as, mass, momentum, and flux, FVM is used in solving problems in science and
engineering (Cai, Z., 1991; Lin, Y., Liu, J., Yand, M., 2013). Ewing and his colleagues (Ewing, R., Li, Z., Lin, T., Lin, Y.,
1991) are the first to investigate immersed finite volume methods (IFVM) on second order elliptic interface problems and
they obtained optimal error estimates in the energy norm. Cao and his colleagues (Cao, W., Zhang, X., Zhang, Z., Zou, Q.,
2017) studied the convergence of the one dimensional elliptic problem for any order finite volume schemes and produced
some super convergence properties as well. A second order convergence in L∞ norm is obtained for an elliptic interface
problem using IFVM in (Wang, Q., Zhang, Z., Wang, L., 2021). However, theoretical analysis of immersed finite volume
methods on parabolic interface problems remains sparse in the literature.

The goal of this article is to propose an immersed finite volume analysis for the elliptic and parabolic interface problems
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and obtain optimal error estimates for the approximated solution. More specifically, we use so called covolume method.
This method uses two types of meshes, the primal and the dual partition, associated with the trial and test spaces respec-
tively. The exact solution of the equation is approximated in the primal partition, while the equation is discretized in the
dual partition. With a transfer operator from trial space to test space, we deduce the relation to the Galerkin finite element
method. As a result, we can use the properties of the finite element analysis to estimate optimal convergence rates. This is
one of the main advantages of the covolume method. The theoretical framework of the covolume method was developed
by Chou and his colleagues in the articles (Chou, S.H., Li, Q., 1999; Chou, S.H., Ye, X., 2007) and references therein. We
extend these convergence properties to the parabolic problem. To the best of the author’s knowledge, this is the first study
that demonstrates convergence properties of the parabolic interface problem via the immersed finite volume method.

The rest of the paper is organized as follows. In Section 2, we introduce the immersed interface finite volume method and
the convergence analysis for the elliptic interface problem. In particular, we show super convergence at the element nodes
when the diffusion coefficient is a piecewise constant. The convergence for the parabolic interface problem is discussed
in Section 3. Simulation of elliptic and parabolic interface problems are provided in Section 4 to confirm the theory. The
conclusions are given in Section 5.

2. Elliptic Interface Problem

In this section we define an immersed interface finite volume method to solve a second order elliptic interface problem

−(βu′)′ = f (x) in (0, 1) (1)

with boundary conditions
u(0) = 0, u(1) = 0, (2)

with the jump conditions on the interface α ∈ (0, 1)

[u]α = 0,
[
βu′

]
α = 0, (3)

where [v]α = lim
x→α−

v(x) − lim
x→α+

v(x). Here, the diffusion coefficient β has a finite jump across the interface. First, consider

the primal partition independent of the interface as

0 = x0 < x1 < x2 < . . . < xN−1 < xN = 1.

Denote hi = xi+1 − xi and h = max0≤i<N hi. We call the element [xk, xk+1] an interface element which contains α, and the
other elements [xi, xi+1] i , k are noninterface elements. For the corresponding trial space, basis functions on noninterface
elements are defined as standard linear Lagrange nodal basis functions φi, i , k. On interface elements basis functions φk

and φk+1 are defined enforcing the jump conditions

[φk]α = 0, [β̄−φ′k]α = 0 [φk+1]α = 0, [β̄+φ′k+1]α = 0,

where β̄− and β̄+ are average of β(x) over [xk, α] and [α, xk+1] respectively.

The basis functions for the interface elements are given by

φk(x) =



0 0 ≤ x < xk−1,
x−xk−1
xk−xk−1

xk−1 ≤ x ≤ xk
xk−x

D + 1 xk ≤ x < α
ρ(xk+1−x)

D α ≤ x < xk+1

0 xk+1 ≤ x ≤ 1

(4)

φk+1(x) =



0 0 ≤ x < xk,
x−xk

D xk ≤ x ≤ α
ρ(x−xk+1)

D + 1 α ≤ x < xk+1
(xk+2−x)
xk+2−xk+1

xk+1 ≤ x < xk+2

0 xk+2 ≤ x ≤ 1,

(5)

where

ρ :=
β−

β+
D := (xk+1 − xk)

β̄+ − β̄−

β̄+
(xk+1 − α).
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So the trial space is chosen as,

Vh := {v ∈ span{φi}
N
i=0 ∩ H1

0(0, 1) : v(0) = 0 = v(1)}.

In this space define the inner-product

(u, v)h =

N−1∑
i=0

∫ xi+1

xi

u(x)v(x)dx ∀u, v ∈ Vh,

and the broken semi-norm and the norm for the above space Vh as

|u|21,h =

N−1∑
i=0;i,k

|u|2H1(xi,xi+1) + |u|2H1(xk ,α) + |u|2H1(α,xk+1)

‖u‖21,h = ‖u‖2 + |u|21,h

respectively, where ‖u‖ =
∑N−1

i=0 |u|
2
L2(xi,xi+1). To construct the dual partition we choose the midpoints between nodes in the

primal partition. We denote

xi−1/2 =
xi−1 + xi

2
, xi+1/2 =

xi + xi+1

2
for i = 1, . . . ,N − 1.

and the dual partition is given by
[xi−1/2, xi+1/2], i = 1 . . .N − 1.

The corresponding test space consists of the piecewise constant functions with respect to the dual partition

Qh = {q ∈ L2(0, 1) : q|[xi−1/2,xi+1/2] = const, i = 1 . . .N − 1}.

As shown in (Chou, S.H., Ye, X., 2007) we define the transfer operator Π∗h from the trail space Vh to the test space Qh,
defined by

Π∗hv(x) =

N∑
i=0

v(xi)χxi (x), ∀x ∈ [0, 1],

where χxi is the characteristic function of the dual element [xi−1/2, xi+1/2] associated with the primal node xi. Moreover,
the convergence of the approximated solution depends on the interpolation of the solution u given by

uI(x) =


xi+1−x

h u(xi) + x−xi
h u(xi+1) i , k, xi ≤ x ≤ xi+1,

u(xk) + κ(x − xk) xk ≤ x ≤ α,
u(xk+1) + κρ(x − xk+1) α ≤ x ≤ xk+1,

(6)

where
κ =

u(xk+1) − u(xk)
α − xk − ρ(α − xk+1)

.

In (Chou, S.H., 2012), Chou proved that, uI(x) has the approximation property

‖u − uI‖ + h‖u − uI‖1,h ≤ Ch2‖u‖2,α. (7)

Here uI is the usual Lagrange interpolation and ‖u‖2,α = ‖u‖H2(0,α) + ‖u‖H2(α,1) .

Lemma 1.1. For any u ∈ H2 ∩ H1
0 , on interface element [xk, xk+1]∫ xk+1

xk

uI − Π∗huI ≤ Ch2‖u‖2,α

and on noninterface element [xi, xi+1], ∫ xi+1

xi

uI − Π∗huI = 0.
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Proof. Consider an interface element [xk, xk+1]. For some ξ ∈ [xk, xk+1]∫ xk+1/2

xk

(u − Π∗hu)dx ≤

∫ xk+1/2

xk

h|u′(ξ)|

≤ h2|u′|∞,[xk ,xk+1/2]

≤ h2|u′|∞,[0,1]

≤ Ch2‖u‖2,α. (8)

We used Sobolev embedding theorem in the last step of the proof. Similarly∫ xk+1

xk+1/2

(u − Π∗hu)dx ≤ Ch2‖u‖2,α. (9)

Now with (7), (8) and (9), and using the fact that Π∗hu = Π∗huI we have,∫ xk+1

xk

(uI − Π∗huI)dx ≤

∫ xk+1

xk

|uI − u|dx +

∫ xk+1

xk

|u − Π∗huI |dx

≤ Ch2‖u‖2,α.

By brute force calculation on noninterface elements, since uI is linear∫ xi+1

xi

(uI − Π∗huI)dx =

∫ xi+1/2

xi

u′I(x − xi)dx +

∫ xi+1

xi+1/2

u′I(x − xi+1)dx = 0

�

Now we present our immersed finite volume scheme. Integrating (1) over each control volume [xi−1/2, xi+1/2] for i =

1 . . .N − 1 and multiplying by Π∗hv, v ∈ Vh, we get,

−

N−1∑
i=1

∫ xi+1/2

xi−1/2

(βu′(x))′Π∗hv(x)dx =

N−1∑
i=1

∫ xi+1/2

xi−1/2

f (x)Π∗hv(x)dx,

N−1∑
i=1

(
β(xi−1/2)u′(xi−1/2)v(xi) − β(xi+1/2)u′(xi+1/2)v(xi)

)
=

N−1∑
i=1

∫ xi+1/2

xi−1/2

f (x)v(xi)dx.

Note that u(x0) = u(xN) = 0. We can define the finite volume bilinear form for any u and v in Vh as

ah(u, v) =

N−1∑
i=1

(
(βu′)(xi−1/2)v(xi) − (βu′)(xi+1/2)v(xi)

)
. (10)

By writing the sum over the dual partition as a sum over the primal partition, the bilinear form (10) becomes

ah(u, v) =

N−1∑
i=0

(
(βu′)(xi+1/2)v(xi+1) − (βu′)(xi+1/2)v(xi)

)
(11)

Since Π∗hv is a piecewise constant in the dual partition, the sum in the equation (11) becomes

ah(u, v) =

N−1∑
i=0

(
(βu′)(xi+1)v(xi+1) − (βu′)(xi)v(xi)

−

N−1∑
i=0

∫ xi+1/2

xi

(βu′Π∗hv)′ds −
N−1∑
i=0

∫ xi+1

xi+1/2

(βu′Π∗hv)′ds
)
.

Then integration by parts of
∑N−1

i=0

∫ xi+1

xi
(βu′)′vdx brings the finite volume bilinear form to

ah(u, v) = (βu′, v′)h

+

N−1∑
i=0

[∫ xi+1/2

xi

(
βu′

)′ (v − Π∗hv)dx +

∫ xi+1

xi+1/2

(
βu′

)′ (v − Π∗hv)dx
]
. (12)
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Furthermore,

N−1∑
i=0

∫ xi+1/2

xi

[(
βu′

)′ (v − Π∗hv)dx +

∫ xi+1

xi+1/2

(
βu′

)′ (v − Π∗hv)dx
]

≤

N−1∑
i=0;i,k

h
[∫ xi+1/2

xi

β′u′v′dx +

∫ xi+1

xi+1/2

β′u′v′dx
]

+

∫ xk+1/2

xk

hβ′u′v′dx +

∫ α

xk+1/2

hβ′u′v′dx +

∫ xk+1

α

hβ′u′v′dx

Thus from classical analysis ah(u, v) bounded

ah(u, v) ≤ C(β, β′)‖u‖1,h‖v‖1,h. (13)

Next we’ll show the coercivity. From (11) for noninterface elements [xi, xi+1], (i , k)(
β(xi+1/2)u′(xi+1/2)u(xi+1) − β(xi+1/2)u′(xi+1/2)u(xi)

)
dx = β(xi+1/2)(u′)2h (14)

Similarly, using the fact that u is only piecewise linear, on the interface element [xk, xk+1],

β(xk+1/2)u′(xk+1/2)(u(xk+1) − u(xk))
= β(xk+1/2)u′+[u+(xk+1) − u+(α) + u−(α) − u−(xk)]
= β(xk+1/2)u′+([u′+(xk+1 − α) + u′−(xk − α)]

= β(xk+1/2)([(u′+)2(xk+1 − α) + u′+u′−(xk − α)] (15)

Combining (14) and (15) and applying them on (11) we can see that β(xk+1/2)u′+u′−(xk − α) is the only possible none-
positive term. Therefore, for the sufficiently small h, particularly on the interface element there is a constant C depend on
β such that

ah(u, u) ≥ C(β)‖u‖21,h. (16)

Remark 1.2. Suppose that the diffusion coefficient β is piecewise constant such that

β(x) =

β− 0 ≤ x ≤ α
β+ α ≤ x ≤ 1

(17)

then from (12) note that ah(u, v) = (βu′, v′)h. In other words when β is piecewise constant finite volume bilinear form is
same as Galerkin finite element bilinear form.

2.1 Convergence of the Elliptic Problem

The immersed finite volume method to solve (1) is to find uh ∈ Vh

ah(uh, v) =

N−1∑
i=0

∫ xi+1

xi

f Π∗hvhdx ∀v ∈ Vh (18)

and the true solution u satisfies

ah(u, v) =

N−1∑
i=0

∫ xi+1

xi

f Π∗hvhdx ∀v ∈ Vh. (19)

Subtracting (18) from (19) we obtain
ah(u − uh, v) = 0 ∀v ∈ Vh. (20)

Theorem 1.3. Let u and uh be solutions of (1) and (18) respectively. Then

‖u − uh‖1,h ≤ Ch‖u‖2,α.
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Proof. Using (20) with boundedness in (13) and coercivity in (16) for any v ∈ Vh we have

‖u − uh‖
2
1,h ≤ ah(u − uh, u − uh) = ah(u − v, u − uh) ≤ C‖u − v‖1,h‖u − uh‖1,h.

Then using the triangular inequality and the approximation property of the interpolation (7), we can conclude

‖u − uh‖1,h ≤ C inf
v∈Vh
‖u − v‖1,h ≤ C‖u − uI‖1,h ≤ Ch‖u‖2,α.

�

Theorem 1.4. Let u and uh be solutions of (1) and (18) respectively. Then

‖u − uh‖ ≤ Ch2(‖u‖2,α + ‖ f ‖∞)

Proof. We prove this using the duality argument. Let w ∈ H2 ∩ H1
0(0, 1) be the solution to dual problem

−(βw′)′ = u − uh in (0, 1)
w(0) = 0 w(1) = 0, (21)
[w]α = 0,

[
βw′

]
α = 0.

Note that
‖w‖2,α ≤ C‖u − uh‖ (22)

and from (7)
‖w − wI‖1,h ≤ ch‖w‖2,α (23)

where wI ∈ Vh is the usual linear interpolant of w. From 21 we obtain

‖u − uh‖
2 = −(u − uh, (βw′)′)h = (β(u − uh)′,w′)h. (24)

At the same time, (12) implies that

ah(u − uh,wI) = (β(u − uh)′,w′I)h

+

N−1∑
i=0

[∫ xi+1/2

xi

(
β(u − uh)′

)′ (wI − Π∗hwI)dx +

∫ xi+1

xi+1/2

(
β(u − uh)′

)′ (wI − Π∗hwI)dx
]
. (25)

Subtracting (25) from (24),

‖u − uh‖
2 = (β(u − uh)′, (w − wI)′)h

−

N−1∑
i=0

[∫ xi+1/2

xi

(
β(u − uh)′

)′ (wI − Π∗hwI)dx +

∫ xi+1

xi+1/2

(
β(u − uh)′

)′ (wI − Π∗hwI)dx
]
. (26)

To estimate the first term in the right we use Theorem 1.3, (23) and (22),

(β(u − uh)′, (w − wI)′)h ≤ C‖u − uh‖1,h‖w − wI‖1,h

≤ Ch‖u − uh‖1,h‖u − uh‖

≤ Ch2‖u‖2,α‖u − uh‖. (27)

Due to the linearity of wI , ‖wI − Π∗hwI‖ ≤ Ch. Then the last two terms in (26) can be estimated as follows. Applying
Lemma 1.1 we have

N−1∑
i=0

[∫ xi+1/2

xi

(
β(u − uh)′

)′ (wI − Π∗hwI)dx +

∫ xi+1

xi+1/2

(
β(u − uh)′

)′ (wI − Π∗hwI)dx
]

=

N−1∑
i=0

(∫ xi+1/2

xi

f (wI − Π∗hwI)dx +

∫ xi+1

xi+1/2

f (wI − Π∗hwI)dx
)

≤

N−1∑
i=0

(∫ xi+1/2

xi

‖ f ‖L∞[xi,xi+1/2](wI − Π∗hwI)dx +

∫ xi+1

xi+1/2

‖ f ‖L∞[xi+1/2,xi+1](wI − Π∗hwI)dx
)

≤

N−1∑
i=0

‖ f ‖∞

(∫ xi+1/2

xi

(wI − Π∗hwI)dx +

∫ xi+1

xi+1/2

(wI − Π∗hwI)dx
)

≤ Ch2‖ f ‖∞‖w‖2,α. (28)

Now using (22) in (27) and applying (27) and (28) in (26) we prove the theorem. �
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The following theorem indicates super convergence at the nodal points. To prove it we use the properties of Galerkin
finite elements.

Theorem 1.5. Assume that the diffusion coefficient β is piecewise constant as in (17). Then

u(xi) − uh(xi) = 0

for all nodes xi, i = 0, . . . ,N.

Proof. Fix y ∈ (0, 1) and due to Remark 1.2, let G(x, y) be the Green’s function satisfying

ah(G(·, y), v) =< δ(x − y), v >, v ∈ Vh.

By working out the closed form of G satisfying the classical formulation

−(βG′)′ = δ(x − y), [G]α = 0, [βG′]α = 0, G(a, y) = G(b, y) = 0,

we see that the Green’s function G, y < α takes the form [Chou, H.S, Attanayake, A, 2017)]

G(x, y) =



(1 − y)x
β−

, 0 < x ≤ y,

y(1 − x)
β−

, y ≤ x ≤ α,

y(1 − x)
β+

, α ≤ x ≤ 1

Now let G = G(x, xi) and use Galerkin orthogonality property, then

u(xi) = uh(xi) = e(xi) = (δ(x − xi), e) = ah(G, e) = 0,

since G ∈ Vh this proves the theorem. �

3. Parabolic Interface Problem

In this section we consider a second order semilinear parabolic interface problem of the form

ut − (βu′)′ = f in (0, 1) × [0,T ] (29)

with initial and boundary conditions

u(·, 0) = 0 in (0, 1), u(0) = 0, u(1) = 0 (30)

with the jump conditions on the interface
[u]α = 0,

[
βu′

]
α = 0, (31)

for T > 0. The semi-discrete immersed interface finite volume problem based on above weak formulation is, find
uh : [0,T ] 7→ Vh, such that

(uh,t,Π
∗
hv)h + ah(uh, v) = ( f ,Π∗hv)h ∀v ∈ Vh (32)

We introduce the operator Rh : H2 ∩ H1
0 7→ Vh defined by

ah(Rhu, v) = ah(u, v) ∀v ∈ Vh. (33)

So by theorems (1.3) and (1.4), it follows that,

‖Rhu − u‖ + h|Rhu − u|1,h ≤ O(h2). (34)

We separate the error into two terms as

uh(t) − u(t) = θ(t) + ρ(t), where θ = uh − Rhu, ρ = Rhu − u,

and from Theorem (1.4) we can see that

‖ρ‖ = ‖Rhu − u‖ ≤ Ch2(‖u‖2,α + ‖ f ‖∞) (35)
‖ρt‖ = ‖Rhut − ut‖ ≤ Ch2(‖ut‖2,α + ‖ ft‖∞). (36)
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Lemma 1.6. If the mesh size h is sufficiently small,

N−1∑
i=1

∫ xi+1

xi

uΠ∗hudx ≥ C‖u‖2.

Proof. Since u is piecewise linear for each noninterface elements, we can show that,

N−1∑
i=1;i,k

∫ xi+1

xi

uΠ∗hudx =

N−1∑
i=0;i,k

∫ xi+1/2

xi

u(x)u(xi)dx +

N∑
i=0;i,k

∫ xi+1

xi+1/2

u(x)u(xi+1)dx,

=
h
4

N−1∑
i=0;i,k

(
u(xi)(u(xi) + u(xi+1/2)) + u(xi+1)(u(xi+1/2) + u(xi+1))

)
,

=
h
4

N−1∑
i=0;i,k

(u(xi)2 + u(xi+1)2) +
h
4

N−1∑
i=0;i,k

u(xi+1/2)(u(xi) + u(xi+1)),

=
h
4

N−1∑
i=0;i,k

(u(xi)2 + 2u(xi+1/2)2 + u(xi+1)2) ≥ 0.

And the Simpsons rule implies

N−1∑
i=1

∫ xi+1

xi

uΠ∗hudx >
N−1∑
i=0

h
6

(u(xi)2 + 4u(xi+1/2)2 + u(xi+1)2) = C‖u‖2.

However, on the interface element u is only piecewise linear. That is∫ xk+1

xk

uΠ∗hudx > C‖u‖2L2[xk ,xk+1] + Ek

where Ek is a quadrature error depends on the u and xk+1 − xk. Now for sufficiently small enough h we find that there is a
constant C where,

N−1∑
i=1

∫ xi+1

xi

uΠ∗hudx ≥ C‖u‖2. (37)

�

The convergence of the immersed finite volume method in the L2 norm is derived in the following theorem.

Theorem 1.7. Let u and uh be solutions of (1) and (18) respectively. Then, there exists a positive constant C independent
of h such that

‖uh − u‖1,h ≤ O(h)

Proof. Since we have the error bound for ρ, we only need to obtain the error bound for θ. Then, it follows from (32) and
(33) that

N−1∑
i=1

∫ xi+1

xi

θtΠ
∗
hvdx + ah(θ, v) =

(
(uh − ũ)t,Π

∗
hv

)
h

+ ah ((uh − ũ), v)

= (uh,t,Π
∗
hv)h + ah(uh, v) − (ũt,Π

∗
hv)h − ah(ũ, v)

= ( f ,Π∗hv)h − (ũt,Π
∗
hv)h − ah(ũ, v)

= ( f ,Π∗hv)h − (ρt,Π
∗
hv)h − (ut,Π

∗
hv)h − ah(ũ, v)

= −(ρt,Π
∗
hv)h ∀v ∈ Vh, t ∈ J.

If v = θt we have that
(θt,Π

∗
hθt)h + ah(θ, θt) = −(ρt,Π

∗
hθt)h. (38)
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Thus using (37) on (38)

(θt,Π
∗
hθt)h + ah(θ, θt) ≤ −(ρt,Π

∗
hθt)h

C‖θt‖
2 +

1
2

d
dt

ah(θ, θ) ≤ −(ρt,Π
∗
hθt)h +

1
2

(ah(θt, θ) − ah(θ, θt)) (39)

From the same argument as in (13) and by inverse inequality

(ah(θt, θ) − ah(θ, θt) =

N−1∑
i=0

[∫ xi+1/2

xi

(βθ′t )
′(θ − Π∗hθ) +

∫ xi+1

xi+1/2

(βθ′t )
′(θ − Π∗hθ)

]

−

N−1∑
i=0

[∫ xi+1/2

xi

(βθ′)′(θt − Π∗hθt) +

∫ xi+1

xi+1/2

(βθ′)′(θt − Π∗hθt)
]

≤ Ch‖θt‖1,h‖θ‖1,h

≤ C‖θt‖‖θ‖1,h. (40)

Similarly,

(ρt,Π
∗
hθt)h = (ρt, θt)h + (ρt,Π

∗
hθt − θ)h

≤ ‖ρt‖‖θt‖ + Ch‖ρt‖‖θt‖1,h

≤ ‖ρt‖‖θt‖ + C‖ρt‖‖θt‖ (41)

Now applying (40) and (41) on (39), with the inequality ab < εa2 + b2/4ε for a, b, ε > 0 and choosing small enough ε to
absorb ‖θt‖

2 term on the right hand into left hand, we get,

1
2

d
dt

ah(θ, θ) ≤ C(‖ρt‖
2 + ‖θ‖21,h) (42)

After integrating both sides with respect to t and using (16),

‖θ(t)‖21,h ≤ ‖θ(0)‖2 + C
∫ t

0

(
‖θ‖21,h + ‖ρt‖

2
)

ds,

and using Gronwalls lemma we obtain

‖θ(t)‖21,h ≤ C‖θ(0)‖21,h + C(T )
∫ t

0
‖ρt‖

2ds.

Since θ(0) = 0,
‖θ(t)‖21,h ≤ C(T )h2‖ut‖2,α

and hence we obtain the desired result

‖uh − u‖1,h ≤ ‖θ‖1,h + ‖ρ‖1,h,

≤ O(h).

�

Theorem 1.8. Let u and uh be solutions of (1) and (18) respectively. And β is a picewise constant function as defined in
(17). Then,

‖uh − u‖ ≤ O(h2)

Proof. According to the remark 1.2, the immersed finite volume bilinear form reduces to the Galerkin immersed finite
element bilinear form. In (Attanayake, C., Senaratne, D., 2011), authors have proved the optimal convergence of a
parabolic interface problem using immersed finite element method that has the same bilinear form. Thus the proof of this
theorem follows from theorem 3.1 in (Attanayake, C., Senaratne, D., 2011). �
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4. Simulation

In this section we present two numerical examples to confirm our theory.

Problem 1 Consider the elliptic interface problem(βu′)′ = 2x x ∈ [0, 1]
u(0) = u(1) = 0

with

β(x) =

x2 + 1 x ∈ [0, α),
x2 x ∈ [α, 1),

(43)

The exact solution is

u(x) =

−x + (1 + d) tan−1 x x ≤ α ∈ [0, α),
−x + d

x + (1 − d) x ∈ [α, 1),

where

d =
α tan−1 α − α

1 − α + α tan−1 α

Let α = π/3. In Table 1 we illustrate L2 and energy norm errors are O(h2) and O(h1) respectively.

Table 1. L2 and energy norm errors for problem 1

h ‖u − uh‖ ‖u − uh‖1,h

1/16 2 4.949e-2 5.519e-
1/32 1.252e-2 2.696e-2
1/64 3.222e-3 1.337e-2
1/128 8.178e-4 6.6758e-3
order ≈ 2 ≈ 1

Problem 2 Consider following parabolic interface problem.
ut − (βu′)′ = f (x, t) x ∈ [0, 1] × [0, 2]
u(x, 0) = 0 x ∈ [0, 1]
u(0, t) = u(1, t) = 0 t > 0

(44)

Here,

f (x, t) =

− x2

β−
+ t2 x

β−
+ x2 + 2t x ≤ α

− x2

β+ + t2 x
β+ −

t2
β+ + 1

β+ + x2 + 2t α ≤ x.

where,

t1 =

(
1 − α4

12β+
− Q

1 − α
β+

+
α4

12β−

)
1

((1 − α)/β+ + α/β−)
;

t2 =

(
−α2

β−
+
α2

β+
−

1
β+

)
1

((α − 1)/β+ − α/β−)
.

Exact solution is given by

u(x, t) =

− x4

12β− +
t1 x
β−

+ t(− x2

β−
+ t2 x

β−
) x ≤ α

−x4

12β+ +
t1 x
β+ −

t1
β+ + 1

12β+ + t(− x2

β+ + t2 x
β+ −

t2
β+ + 1

β+ ) α ≤ x.
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Table 2. L2 and energy norm errors for problem 2

h ‖u − uh‖ ‖u − uh‖1,h
1/16 2.347e-2 8.411e-2
1/32 5.822e-3 4.215e-2
1/64 1.444e-3 2.119e-2

1/128 3.609e-4 1.075e-2
order ≈ 2 ≈ 1

β− = 1, β+ = 100

h ‖u − uh‖ ‖u − uh‖1,h
1/16 1.053e-3 3.341e-2
1/32 2.817e-4 1.636e-2
1/64 6.928e-5 7.612e-3

1/128 1.7219e-5 3.773e-3
order ≈ 2 ≈ 1

β− = 100, β+ = 1

The table 2 contain L2 energy norm errors of the solutions of the parabolic problem for β− = 1 β+ = 100 and β− = 100
β+ = 1. Error values in Table 2 clearly indicate that solution uh converges to u with optimal rate O(h2) and O(h) in L2 and
energy norms for parabolic problem. We use Crank-Nicolson method to solve time discretized problem.

5. Conclusions

We considered an immersed interface finite volume method for second order elliptic and parabolic interface problems.
By assuming the diffusion coefficient β has a finite jump across the interface and is piecewise constant,we obtained the
optimal convergence in L2 and energy norms. Further, we prove super convergence at the element nodes. We obtained
optimal convergence in the L2 norm for the parabolic interface problem with piecewise constant diffusion coefficient β.
When a variable diffusion coefficient is present in the parabolic interface problem, we obtained the the optimal order in
energy norm.
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