An Analytic Form for Riemann Zeta Function at Integer Values
- Franck Delplace
Abstract
An original definition of the generalized Euler-Mascheroni constants allowed us to prove that their infinite sum converges to the number (1-Ln2) . By considering this number is the Lebesgue measure of a set defined as the difference between the area of the square unit and the area under the curve y=1/x 1≤x≤2 ; we introduced a partition of this set such that each Lebesgue measure of the subsets can be related to values of Riemann zeta function at integers. From this relationship, we proved that the Lambert W function can produce all ζ(s) values whatever is the parity of s . Finally, by considering that ζ(s) values allow calculation of the probability, for s integers chosen in an interval [1,n] n∈N , to be coprime; we proved that Lambert W function can describe prime numbers distribution.
- Full Text: PDF
- DOI:10.5539/jmr.v14n6p1
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org