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Abstract 

An original definition of the generalized Euler-Mascheroni constants allowed us to prove that their infinite sum converges 

to the number (1 − 𝐿𝑛2). By considering this number is the Lebesgue measure of a set defined as the difference between 

the area of the square unit and the area under the curve 𝑦 = 1 𝑥⁄  1 ≤ 𝑥 ≤ 2; we introduced a partition of this set such that 

each Lebesgue measure of the subsets can be related to values of Riemann zeta function at integers. From this relationship, 

we proved that the Lambert W function can produce all 𝜁(𝑠) values whatever is the parity of 𝑠. Finally, by considering 

that 𝜁(𝑠) values allow calculation of the probability, for 𝑠 integers chosen in an interval [1, 𝑛] 𝑛 ∈ ℕ, to be coprime; we 

proved that Lambert W function can describe prime numbers distribution. 

Keywords: zeta function, odd integers, Euler-Mascheroni constant, Apéry’s constant, Lambert W function, prime 

numbers 

1. Introduction 

In mathematics, some problems which look trivial remain unsolved for many centuries even if the greatest genius spent a 

lot of efforts trying to solve them. Among these problems, values of Riemann zeta function at odd integers i.e., {𝜁(2𝑘 +
1); 𝑘 = 1,2, … } is certainly one of the greatest as reported by many authors (van der Poorten, 1979; Srivastava, 1999; 

Lagarias, 2013; Delplace, 2019). 

As an illustration, it is quite easy to calculate the integral ∫
1

𝑥3 𝑑𝑥
+∞

1
 giving the rational value 1 2⁄ , but calculation of the 

series: 𝜁(3) = ∑
1

𝑘3
+∞
𝑘=1  has been, until now, not achieved. Using a geometrical interpretation, as proposed in the 

following Figure 1, we show, it is much easier to calculate the area under the quite complex shape curve of function 

𝑓(𝑥) = 1 𝑥3⁄  𝑥 ≥ 1, rather than calculating the sum of all rectangular areas corresponding to an upper Darboux sum. 

 

Figure 1. The curve of function 𝑓(𝑥) = 1 𝑥3⁄  1 ≤ 𝑥 ≤ 5 and rectangles of upper Darboux sum 

From the French mathematician Roger Apéry’s work (Apéry, 1979), we know that this series, corresponding to 𝜁(3), and 

often called Apéry’s constant, is an irrational number which is always considered an amazing result (van der Poorten, 

1979). But for other odd values, i.e.  𝜁(5), 𝜁(7), …  we have no idea of the deep nature of these numbers. 
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For even powers, the problem was solved by Léonard Euler around 1735 (Ayoub, 1974), starting with famous Basel 

problem and giving the incredible result 𝜁(2) = ∑
1

𝑘2
+∞
𝑘=1 =

𝜋2

6
. The genius Euler established then the general closed 

form 𝜁(2𝑘) = |𝐵2𝐾|  
(2𝜋)2𝑘

2(2𝑘)!
 with 𝐵2𝑘 the Bernoulli numbers. It allows to obtain results such as: 𝜁(4) =

𝜋4

90
;  𝜁(6) =

𝜋6

945
;  𝜁(8) =

𝜋8

9450
; … 

In the same way of thinking, i.e., calculation of the upper Darboux sum and the area under the curve by integration, Euler 

introduced the famous Euler-Mascheroni constant (Lagarias, 2013) as: 

𝛾 = lim𝑛→+∞ (∑
1

𝑘

𝑛
𝑘=1 − ∫

1

𝑥
𝑑𝑥

𝑛

1
) = lim𝑛→+∞ (∑

1

𝑘

𝑛
𝑘=1 − 𝐿𝑛(𝑛))                     (1) 

As shown in Figure 1, the function 𝑓 is, in that case, 𝑓(𝑥) = 1 𝑥⁄  and upper Darboux sum corresponds to the harmonic 

series. In that amazing case, both the series and the integral diverge; but their difference has an asymptotic behavior giving 

famous 𝛾 value: 

𝛾 = 0.577 215 664 901 532 860 606 512 090 082 …  

In the next section, the often-called generalized Euler-Mascheroni constants will be introduced in order to study more 

deeply the relationship between 𝛾  and 𝜁(2𝑘 + 1)  values. Then, by considering a set of Lebesgue measure value 

(1 − 𝐿𝑛2), we will introduce a partition of this set able to recover all 𝜁(𝑠) values at integers whatever their parity is. 

Finally, in the discussion, we will consider a possible closed form for 𝜁(𝑠) values and the consequences in number theory 

for prime numbers repartition. 

2. Material Studied, Generalized Euler-Mascheroni Constant and 𝜻(𝟐𝒌 + 𝟏) Values 

A generalized Euler-Mascheroni constant can be defined as follows (Euler's constant - Wikipedia): 

Definition 1: 

                            (2) 

From a geometrical point of view, any 𝛾𝑠 value is a measurement of the area of light green zone in the following Figure 2. 

 

Figure 2. Geometrical meaning of 𝛾𝑠 values i.e., the area of light green zones  

The case 𝑠 = 1 corresponds to Euler-Mascheroni constant as reported in the introduction: 

𝛾
1

= 𝛾 = lim
𝑛→+∞

(∑
1

𝑘

𝑛

𝑘=1

− ∫
1

𝑥
𝑑𝑥

𝑛

1

) 

https://en.wikipedia.org/wiki/Euler%27s_constant


 

 

http://jmr.ccsenet.org                        Journal of Mathematics Research                       Vol. 14, No. 6; 2022 

3 

For 𝑠 > 1, both the series and the integral converge, and we have: 𝛾
𝑠

= 𝜁(𝑠) −
1

𝑠−1
. For each value of 𝑠, 𝜁(𝑠) is a 

measurement of the total area of upper Darboux sum rectangles and 
1

𝑠−1
 is a measurement of the area under the curve 

of equation 𝑦 = 1 𝑥𝑠⁄  (according to Figure 2). We have, of course, lim𝑠→+∞
1

𝑠−1
= 0 following the evolution of 

𝑦 = 1 𝑥𝑠⁄  curve shape as 𝑠 increases and lim𝑠→+∞ 𝜁(𝑠) = 1 in agreement with the first square area in Figure 2 

(1 ≤ 𝑥 ≤ 2). 

Because of these trivial considerations, we have the following Theorem 1. 

Theorem 1: 

lim
𝑛→+∞

∑ 𝛾
𝑠

𝑛

𝑠=1

= +∞ 

In order to avoid divergence of the above series, we propose to define the generalized Euler-Mascheroni constants as 

followed. 

Definition 2: 

∀𝑠 ≥ 1;  𝑠 ∈ ℕ     𝛾𝑠
∗ = lim𝑛→+∞ (∑

1

𝑘𝑠
𝑛
𝑘=2 − ∫

1

𝑥𝑠

𝑛

2
𝑑𝑥)                         (3) 

This definition means we suppress the first light green surface in Figure 2. 

It allows the following theorem (trivial) to be written. 

Theorem 2: 

 𝛾1
∗ = 𝛾 + 𝐿𝑛2 − 1                                                                                            (4) 

Proof: 

From Definition 2, we have: 

𝛾
1
∗ = lim

𝑛→+∞
(∑

1

𝑘

𝑛

𝑘=2

− ∫
1

𝑥
𝑑𝑥

𝑛

2

) 

⇒  𝛾1
∗ = lim

𝑛→+∞
[(∑

1

𝑘

𝑛

𝑘=1

− 1) − (∫
1

𝑥
𝑑𝑥

𝑛

1

− ∫
1

𝑥
𝑑𝑥

2

1

)]  

⇒  𝛾1
∗ = lim

𝑛→+∞
[(∑

1

𝑘

𝑛

𝑘=1

− ∫
1

𝑥
𝑑𝑥

𝑛

1

) + ∫
1

𝑥
𝑑𝑥

2

1

− 1] 

⇒  𝛾1
∗ = ∫

1

𝑥
𝑑𝑥

2

1

− 1 + lim
𝑛→+∞

(∑
1

𝑘

𝑛

𝑘=1

− ∫
1

𝑥
𝑑𝑥

𝑛

1

) 

⇒  𝛾1
∗ = 𝐿𝑛2 − 1 + 𝛾 

For 𝑠 > 1, we can propose the following theorem. 

Theorem 3:                          ∀𝑠 > 1;  𝑠 ∈ ℕ     𝛾𝑠
∗ = (𝜁(𝑠) − 1) −

1

𝑠−1
21−𝑠                         (5) 

Proof: 
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From Definition 2, we have: 

𝛾
𝑠
∗ = lim

𝑛→+∞
(∑

1

𝑘𝑠

𝑛

𝑘=2

− ∫
1

𝑥𝑠
𝑑𝑥

𝑛

2

) 

⇒  𝛾𝑠
∗ = lim

𝑛→+∞
[(∑

1

𝑘𝑠

𝑛

𝑘=1

− 1) − (∫
1

𝑥𝑠
𝑑𝑥

𝑛

1

− ∫
1

𝑥𝑠
𝑑𝑥

2

1

)] 

⇒  𝛾𝑠
∗ = lim

𝑛→+∞
[(∑

1

𝑘𝑠

𝑛

𝑘=1

− ∫
1

𝑥𝑠
𝑑𝑥

𝑛

1

) + ∫
1

𝑥𝑠
𝑑𝑥

2

1

− 1] 

⇒  𝛾𝑠
∗ = ∫

1

𝑥𝑠
𝑑𝑥

2

1

− 1 + lim
𝑛→+∞

(∑
1

𝑘𝑠

𝑛

𝑘=1

− ∫
1

𝑥𝑠
𝑑𝑥

𝑛

1

) 

Using Definition 1, we can write: 

⇒   𝛾𝑠
∗ =

1

𝑠 − 1
(1 − 21−𝑠) − 1 + 𝛾𝑠 

⇒   𝛾𝑠
∗ = (𝜁(𝑠) − 1) −

1

𝑠 − 1
21−𝑠 

Because of the above Theorems 2 & 3 we can write the following Corollary 1. 

Corollary 1: ∀s ≥ 1;  s ∈ ℕ the measurements of the areas given by γs
∗  values depend on mathematical constants 

γ, Ln2 and ζ(s). 

We can now study the convergence of the series lim𝑛→+∞ ∑ 𝛾𝑠
∗𝑛

𝑠=2 . This approach gave rise to the following theorem. 

Theorem 4: the series 

 

 

 

converges to the transcendental number (1 − Ln2) 

Proof: 

From Theorem 3, we can write: 

lim
𝑛→+∞

∑ 𝛾𝑠
∗

𝑛

𝑠=2

= lim
𝑛→+∞

[∑ ((𝜁(𝑠) − 1) −
1

𝑠 − 1
21−𝑠)

𝑛

𝑠=2

] = lim
𝑛→+∞

[∑(𝜁(𝑠) − 1)

𝑛

𝑠=2

] − lim
𝑛→+∞

[∑ (
1

𝑠 − 1
21−𝑠)

𝑛

𝑠=2

] 

It is well known ( Particular values of the Riemann zeta function - Wikipedia) that, 

lim
𝑛→+∞

[∑(𝜁(𝑠) − 1)

𝑛

𝑠=2

] = ∑(𝜁(𝑠) − 1)

+∞

𝑠=2

= 1 

For the other sum, 

∑ (
1

𝑠 − 1
21−𝑠)

𝑛

𝑠=2

 

we can write: 

https://en.wikipedia.org/wiki/Particular_values_of_the_Riemann_zeta_function
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∀𝑠 ∈ ℕ  𝑠 ≥ 2  ∫
1

𝑥𝑠
𝑑𝑥

+∞

2

=
1

𝑠 − 1
 21−𝑠 

⇒   ∑ (
1

𝑠 − 1
21−𝑠)

𝑛

𝑠=2

= ∑ ∫
1

𝑥𝑠
𝑑𝑥

+∞

2

𝑛

𝑠=2

 

Using integral linearity gives: 

∑ (
1

𝑠 − 1
21−𝑠)

𝑛

𝑠=2

= ∫ ∑
1

𝑥𝑠

𝑛

𝑠=2

+∞

2

𝑑𝑥 

The series in the right-hand side converges as a geometric series, giving: 

lim
𝑛→+∞

[∑ (
1

𝑠 − 1
21−𝑠)

𝑛

𝑠=2

] = ∫ ∑
1

𝑥𝑠

+∞

𝑠=2

+∞

2

𝑑𝑥 = ∫
1

𝑥(𝑥 − 1)

+∞

2

 𝑑𝑥 

Considering that: 

∫
1

𝑥(𝑥 − 1)

+∞

2

 𝑑𝑥 = lim
𝑛→+∞

[∫
1

𝑥(𝑥 − 1)

𝑛

2

 𝑑𝑥] 

Expanding the rational fraction under the integrand gives: 

∫
1

𝑥(𝑥 − 1)
𝑑𝑥

𝑛

2

= ∫
1

𝑥 − 1

𝑛

2

𝑑𝑥 − ∫
1

𝑥

𝑛

2

𝑑𝑥 = 𝐿𝑛 (
𝑛 − 1

𝑛
) + 𝐿𝑛2 

And, 

lim
𝑛→+∞

[𝐿𝑛 (
𝑛 − 1

𝑛
) + 𝐿𝑛2] = 𝐿𝑛2 

Giving the result, 

lim
𝑛→+∞

∑ 𝛾𝑠
∗

𝑛

𝑠=2

= lim
𝑛→+∞

[∑(𝜁(𝑠) − 1)

𝑛

𝑠=2

] − lim
𝑛→+∞

[∑ (
1

𝑠 − 1
21−𝑠)

𝑛

𝑠=2

] = ∑ 𝛾𝑠
∗

+∞

𝑠=2

= 1 − 𝐿𝑛2 

Finally, we know, from (Baker, 1990), that 𝐿𝑛2  is a transcendental number and then the series converges to a 

transcendental number. 

Because we know, from Theorem 1 that 𝛾1
∗ = 𝛾 + 𝐿𝑛2 − 1, we obtain directly the following corollary. 

Corollary 2: The series 

∑ γ
s
∗

+∞

s=1

 

converges to the Euler-Mascheroni constant γ. 

From these results and by use of Theorems 2 & 3 it is possible to calculate Riemann zeta function at odd integer values in 

the following way (the considered example is calculation of Apéry’s constant): 

 

 



 

 

http://jmr.ccsenet.org                        Journal of Mathematics Research                       Vol. 14, No. 6; 2022 

6 

 

 

 

 

 

By use of a matrix approach, (Delplace, 2017) proposed the following expression for Apéry’s constant. 

𝜁(3) = 3 − 𝜁(2) − ∑
1

𝑘3(𝑘 − 1)

+∞

𝑘=2

 

This result can also be obtained by expanding the rational fraction 
1

𝑘3(𝑘−1)
 as followed: 

 

 

 

 

 

The first series in the right-hand side is a telescopic series of value equal to 1, giving: 

∑
1

𝑘3(𝑘 − 1)

+∞

𝑘=2

= 1 − (𝜁(2) − 1) − (𝜁(3) − 1) = 3 − 𝜁(2) − 𝜁(3) 

Giving the above researched result. 

As reported in (Mathar, 2009), this result can be generalized by induction giving the following theorem. 

Theorem 5: 

∀𝑠 > 1;  𝑠 ∈ ℕ   ∑
1

𝑘𝑠(𝑘 − 1)

+∞

𝑘=2

= 𝑠 − ∑ 𝜁(𝑘)

𝑠

𝑘=2

                                                                (6) 

Identification of above expressions obtained for Apéry constant:  

𝜁(3) = 3 − 𝜁(2) − (𝛾 + 𝐿𝑛2 −
5

8
− 𝛼) 

And, 

𝜁(3) = 3 − 𝜁(2) − ∑
1

𝑘3(𝑘 − 1)

+∞

𝑘=2

 

We obtain, 

∑
1

𝑘3(𝑘 − 1)

+∞

𝑘=2

= 𝛾 + 𝐿𝑛2 −
5

8
− 𝛼 

Numerically we have: 

𝛼 = 0.492 353 815 469 298 891 895 897 539 698 … 

Giving 
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∑
1

𝑘3(𝑘 − 1)

+∞

𝑘=2

= 0.153 009 029 992 179 278 127 846 671 842 524 820 … 

A recent paper (Delplace, 2019), cited in (Srivastava, 2019), also showed that Apéry’s constant can be calculated as 

followed: 

𝜁(3) =
𝜋3

28
+

16

7
∑

1

(4𝑘 − 1)3

+∞

𝑘=1

                                                                        (7) 

We can then consider that the quantity 𝜋3 28⁄  must be introduce in the previous equations. The quantity (𝛼 + 5 8⁄ ) is 

strictly greater than 𝜋3 28⁄  then, by defining quantity 𝜏 = (𝛼 + 5 8⁄ ) − 𝜋3 28⁄ , we obtain the following theorem. 

Theorem 6: 

𝜁(3) = 3 −
𝜋2

6
+

𝜋3

28
− 𝛾 − 𝐿𝑛2 + 𝜏                                                               (8) 

With, τ = 0.009 986 791 172 876 742 771 743 430 158 716 636 … 

As an interesting result, 𝜏 appears not very far from the rational number 1 100⁄ . 

This approach can be generalized to all 𝜁(2𝑘 + 1) 𝑘 = 1,2, … values showing the deep link between Riemann zeta 

function values at odd integers and the Euler-Mascheroni constant which was the objective of this paragraph. But despite 

of these efforts, the undetermined quantity we called 𝜏 does not allow a closed form for Apéry constant to be obtain even 

if this quantity is quite close to a rational number. Another time, the problem of Riemann zeta function values at odd 

integers shows its great complexity and we decided to develop a new approach. In above Theorem 4, we found that the 

transcendental number (1 − 𝐿𝑛2) is a measurement of the total area defined by 𝛾𝑠
∗ 𝑠 = 2,3, … And these areas are 

clearly identified by the corresponding light green zones in Figure 2. 

We will now consider that (1 − 𝐿𝑛2) is also a Lebesgue measure of the area defined as the difference between the 

measure of the square unit and the curve 𝑦 = 1 𝑥⁄   1 ≤ 𝑥 ≤ 2. 

3. Results 

Using Theorems 2 & 3 of the previous chapter, we can calculate numerical values 𝛾𝑠
∗ for 𝑠 ≥ 1. The following Figure 3 

shows values found for 𝑠 = 1, … ,5 

 

Figure 3. 𝛾𝑠
∗ values for 𝑠 = 1, … ,5 and light green rectangles 𝐴𝑘  𝑘 ≥ 2 

From Theorem 4, we know that the infinite sum of measurements of light green rectangles in above Figure 3 is (1 − 𝐿𝑛2). 

Let us consider that each rectangle is a subset 𝐴𝑘  of a set 𝐸  of Lebesgue measure 𝜇(𝐸) = (1 − 𝐿𝑛2). We have, 

𝐸 = ⋃ 𝐴𝑘
+∞
𝑘=2  with 𝐴𝑗 ∩ 𝐴𝑘 = ∅ 𝑗 ≠ 𝑘 which means that the 𝐴𝑘 are a partition of the set 𝐸. We have then ∀𝑘 ≥ 2, 𝑘 ∈

ℕ   𝜇(𝐴𝑘) = 𝛾𝑘
∗ and 𝜇(𝐸) = ∑ 𝜇(𝐴𝑘)+∞

𝑘=2 = ∑ 𝛾𝑘
∗+∞

𝑘=2 = (1 − 𝐿𝑛2). 

As proposed at the end of the second paragraph of this paper, we introduce now the set 𝐸′ corresponding to the area 

difference between the square unit and the curve 𝑦 = 1 𝑥⁄   1 ≤ 𝑥 ≤ 2. This set is illustrated in Figure 4. 
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Figure 4. The curve 𝑦 = 1 𝑥⁄  1 ≤ 𝑥 ≤ 2 and the set 𝐸′ 

The set 𝐸′ has the same Lebesgue measure than the set 𝐸: 𝜇(𝐸′) = 𝜇(𝐸) = (1 − 𝐿𝑛2). 

We introduce now a mapping of the subsets 𝐴𝑘 of 𝐸 in the set 𝐸′ giving the subsets 𝐵𝑘 as a partition of 𝐸′ illustrated 

in Figure 5. 

 

Figure 5. The subsets 𝐵𝑘 such as 𝜇(𝐵𝑘) = 𝜇(𝐴𝑘) = 𝛾𝑘
∗ 

The measure 𝜇(𝐵𝑘) can be calculated as followed using notations of Figure 5. 

𝜇(𝐵𝑘) = (2 − 𝑥𝑘−1)
1

𝑥𝑘−1

− ∫
1

𝑥
𝑑𝑥

𝑥𝑘

𝑥𝑘−1

− (2 − 𝑥𝑘)
1

𝑥𝑘

 

Giving, 

𝜇(𝐵𝑘) = (𝐿𝑛𝑥𝑘−1 +
2

𝑥𝑘−1

) − (𝐿𝑛𝑥𝑘 +
2

𝑥𝑘

) 

The first term starts at 𝑘 = 2 with 𝑥1 = 1 according to Figure 5. From above relationship and using 𝜇(𝐵𝑘) = 𝜇(𝐴𝑘) =
𝛾𝑘

∗ we can write the following terms: 

𝜇(𝐵2) = 2 − 𝐿𝑛𝑥2 −
2

𝑥2

= 𝜁(2) −
3

2
 

𝜇(𝐵3) = (𝐿𝑛𝑥2 +
2

𝑥2

) − (𝐿𝑛𝑥3 +
2

𝑥3

) = 𝜁(3) −
9

8
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𝜇(𝐵4) = (𝐿𝑛𝑥3 +
2

𝑥3

) − (𝐿𝑛𝑥4 +
2

𝑥4

) = 𝜁(4) −
25

24
 

… 

Giving the following theorem as a recursive formula. 

Theorem 7: 

 

(9) 

 

If we find a continuous function able to give all values of 𝑥𝑘, then we can obtain an analytic form for all 𝜁(𝑘) values, 

whatever is the parity of integer 𝑘. Due to the mathematical form of transcendental equation (9): 

𝐿𝑛𝑥𝑘 +
2

𝑥𝑘

= 𝑅𝑘                                                                                 (10) 

The Lambert W function (Lambert W function - Wikipedia) appeared the right candidate giving the following theorem. 

Theorem 8:  

Solutions 𝑥𝑘 of equation 

𝐿𝑛𝑥𝑘 +
2

𝑥𝑘

= 𝑅𝑘 𝑤𝑖𝑡ℎ 𝑅𝑘 ∈ ℝ 

Take the form, 

𝑥𝑘 = 𝑒𝑥𝑝(𝑊(−2𝑒−𝑅𝑘) + 𝑅𝑘) =
−2

𝑊(−2𝑒−𝑅𝑘)
                                                          (11) 

Proof: 

By replacing the proposed solution (11) in the equation (10), we obtain, 

𝑊(−2𝑒−𝑅𝑘) + 𝑅𝑘 +
2

𝑒𝑥𝑝(𝑊(−2𝑒−𝑅𝑘) + 𝑅𝑘)
= 𝑊(−2𝑒−𝑅𝑘) + 𝑅𝑘 +

2𝑒−𝑅𝑘

𝑒𝑥𝑝(𝑊(−2𝑒−𝑅𝑘))
 

Because Lambert W function is the inverse function of 𝑦 = 𝑥𝑒𝑥, we have the identity 𝑒𝑊(𝑥) = 𝑥 𝑊(𝑥)⁄ , giving the 

following equality, 

𝑊(−2𝑒−𝑅𝑘) + 𝑅𝑘 +
2𝑒−𝑅𝑘

𝑒𝑥𝑝(𝑊(−2𝑒−𝑅𝑘))
= 𝑊(−2𝑒−𝑅𝑘) + 𝑅𝑘 +

2𝑒−𝑅𝑘𝑒𝑅𝑘

−2
𝑊(−2𝑒−𝑅𝑘) = 𝑅𝑘  

From the definition of 𝐵𝑘 subsets, values of 𝑥𝑘 ∈ [1,2] meaning the following corollary must be true. 

Corollary 3: 

lim
𝑘→+∞

𝑒𝑥𝑝(𝑊(−2𝑒−𝑅𝑘) + 𝑅𝑘) = 2 

Proof: 

From previous results given in chapter 2 of this paper, we have, 

lim
𝑘→+∞

𝑅𝑘 = 2 + 𝐿𝑛2 − 1 = 1 + 𝐿𝑛2 

Giving, 

lim
𝑘→+∞

𝑒𝑥𝑝(𝑊(−2𝑒−𝑅𝑘) + 𝑅𝑘) = 𝑒𝑥𝑝 (𝑊(−2𝑒−(1+𝐿𝑛2)) + (1 + 𝐿𝑛2)) = 𝑒(1+𝐿𝑛2)𝑒𝑥𝑝 (𝑊(−2𝑒−(1+𝐿𝑛2))) 

Using the identity 𝑒𝑊(𝑥) = 𝑥 𝑊(𝑥)⁄ , 

https://en.wikipedia.org/wiki/Lambert_W_function
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lim
𝑘→+∞

𝑒𝑥𝑝(𝑊(−2𝑒−𝑅𝑘) + 𝑅𝑘) = 𝑒(1+𝐿𝑛2)
−2𝑒−(1+𝐿𝑛2)

𝑊(−2𝑒−(1+𝐿𝑛2))
=

−2

𝑊(−2𝑒−(1+𝐿𝑛2))
 

We also have, 

−2𝑒−(1+𝐿𝑛2) = −
1

𝑒
 

And taking 𝑥 = −1 in equality (𝑥𝑒𝑥) = 𝑥 , gives 𝑊(− 1 𝑒⁄ ) = −1 

Finally, we obtain the expected result, 

lim
𝑘→+∞

𝑒𝑥𝑝(𝑊(−2𝑒−𝑅𝑘) + 𝑅𝑘) = 2 

4. Discussion 

The Lambert W function cannot be expressed in terms of elementary functions. It is a multivalued special function with 

two real branches called 𝑊0 and 𝑊−1. The branch 𝑊0 corresponds to real numbers 𝑥 ∈ [− 1 𝑒⁄ , +∞[ and the other 

branch 𝑊−1 to real numbers 𝑥 ∈ [− 1 𝑒⁄ , 0[ meaning that the function gives two values in this last interval. 

From the definition of subsets 𝐵𝑘, we know that 1 < 𝑥𝑘 ≤ 2. By considering that (1 + 𝐿𝑛2) ≤ 𝑅𝑘 ≤ 7 2⁄ − 𝜁(2), it is 

straightforward that 𝑊−1 is the right branch which satisfy Theorem 8. 

Because Lambert W function is a special function, and according to (Chow, 2018), it appears not possible to say that 𝑥𝑘 

are closed-form numbers even if this problem is known complex and always the subject of debates. But, at least, these 

numbers are given by a well-defined continuous function (𝑊−1), and therefore, they are analytical values. 

In order to illustrate calculations, values of 𝑅𝑘, 𝑥𝑘 , 𝜁(𝑘) from theorem 7 and , 𝜁(𝑘) from Euler formula (even integers) or 

from OEIS (odd integers) are given in the following Table 1. 

Table 1. Values of 𝑅𝑘, 𝑥𝑘 , 𝜁(𝑘) for 2 ≤ 𝑘 ≤ 7 

k 𝑅𝑘 𝑥𝑘 𝜁(𝑘) theorem 7 
𝜁(𝑘) Euler or 

OEIS 

2 

7

2
− 𝜁(2) 

1.855065933… 

−2 𝑊−1 (−2𝑒𝜁(2)−
7
2)⁄  

1.189230998… 

7

2
− (𝐿𝑛𝑥2 +

2

𝑥2
) 

1.644934067… 

𝜋2

6
 

1.644934067… 

3 

37

8
− 𝜁(2) − 𝜁(3) 

1.778009029… 

−2 𝑊−1 (−2𝑒𝜁(2)+𝜁(3)−
37
8 )⁄  

1.360184737… 

9

8
+ 𝐿𝑛 (

𝑥2

𝑥3
) + (

2

𝑥2
−

2

𝑥3
) 

1.202056903… 

1.202056903… 

4 

17

3
− 𝜁(2) − ⋯ − 𝜁(4) 

1.737352462… 

−2 𝑊−1 (−2𝑒𝜁(2)+⋯+𝜁(4)−
17
3 )⁄  

1.506578656… 

25

24
+ 𝐿𝑛 (

𝑥3

𝑥4
) + (

2

𝑥3
−

2

𝑥4
) 

1.082323234… 

𝜋4

90
 

1.082323234… 

5 

1283

192
− 𝜁(2) − ⋯ − 𝜁(5) 

1.716049707… 

−2 𝑊−1 (−2𝑒𝜁(2)+⋯+𝜁(5)−
1283
192 )⁄  

1.626605862… 

65

64
+ 𝐿𝑛 (

𝑥4

𝑥5
) + (

2

𝑥4
−

2

𝑥5
) 

1.036927755… 

1.036927755… 

6 

7381

960
− 𝜁(2) − ⋯ − 𝜁(6) 

1.704956645… 

−2 𝑊−1 (−2𝑒𝜁(2)+⋯+𝜁(6)−
7381
960 )⁄  

1.721679673… 

161

160
+ 𝐿𝑛 (

𝑥5

𝑥6
) + (

2

𝑥5
−

2

𝑥6
) 

1.017343062… 

𝜋6

945
 

1.017343062… 

7 

16687

1920
− 𝜁(2) − ⋯ − 𝜁(7) 

1.699211535… 

−2 𝑊−1 (−2𝑒𝜁(2)+⋯+𝜁(7)−
16687
1920 )⁄  

1.794993948… 

385

384
+ 𝐿𝑛 (

𝑥6

𝑥7
) + (

2

𝑥6
−

2

𝑥7
) 

1.008349277… 

1.008349277… 

 

As reported before, 𝑅𝑘  values decrease as 𝑘 increase to reach the limit value (1 + 𝐿𝑛2) = 1.693147181 … Then, 

𝜁(𝑘) values are calculated with recursive formula of theorem 7 and implicit values given by 𝑊−1. It is interesting to 
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notice that as 𝑅𝑘  values vary in a very narrow range (from (1 + 𝐿𝑛2) = 1.693147181 …  to (7 2⁄ − 𝜁(2)) =
1.855065933 … ), quantities (−2𝑒−𝑅𝑘)  also vary in a very narrow range (from − 1 𝑒⁄ = −0.367879441 …  to 

−2𝑒𝜁(2)−7 2⁄ = −0.312885255 …). Finally, theorem 7 gives 𝜁(𝑘) varying in the range 1 to 𝜋2 6⁄ . 

We can then say that 𝜁(𝑘) values at integers are fully determined by Lambert W function whatever is the parity of 

integers 𝑘. This function appears to be a more general form than the closed form found by Euler at even integers. 

This result could be important in number theory due to the link between Riemann zeta function values and the probability 

that 𝑘 integers chosen at random in any interval [1, 𝑛] will be coprime. Famous Cesàro theorem (Théorème de Cesàro 

(théorie des nombres) — Wikipédia (wikipedia.org) showed that this probability is 𝑝𝑘 = 1 𝜁(𝑘)⁄  when 𝑛 tends toward 

infinity. Because we demonstrated above that all 𝜁(𝑘) come from Lambert W function values we can write the following 

theorem. 

Theorem 9: 

The probability that k integers chosen at random in any interval [1, n] will be coprime is fully determined by values of 

Lambert W function: 𝑊−1(𝑥) with 𝑥 ∈ [− 1 𝑒⁄ , −2𝑒𝜁(2)−7 2⁄  ]. 

This strong result is linked to the partition of the set 𝐸′ of measure 𝜇(𝐸′) = (1 − 𝐿𝑛2) we introduced in paragraph 3 of 

this paper. We tried without success, to find other partitions of this set and other sets having the same Lebesgue measure. 

Of course, research about this type of sets would be interesting.  

5. Conclusion 

As reported in the introduction of this paper, the enigma of Riemann zeta function at odd integers remains an interesting 

subject for many reasons. The first one, probably the most fundamental in mathematics, is the understanding of the deep 

nature of numbers 𝜁(3), 𝜁(5), 𝜁(7), … Euler himself was surprised by the value 𝜋2 6⁄  he found for the Basel problem, 

and he said: “I discovered against all odds, an elegant expression of the sum of the series: squaring of the circle. I 

discovered that six times the sum of this series was equal to the square of the length of the circumference whose diameter 

is one”. 

Another one concern the link between Riemann zeta function and prime numbers repartition which is always a great 

mystery known to be linked to famous Riemann conjecture. But knowledge at integers, and a deep understanding of the 

function, associated to probability of integers chosen at random to be coprime, is also of importance. Among others, 

applications in physics are also of major interest. Values at odd integers can be found in quantum electrodynamics 

(Berestetskii et al., 1982) or in continuous media mechanics (Delplace, 2019). 

This article is an attempt to find a response to this mystery by use of generalized Euler-Mascheroni constants. The readers 

must know that for most of the duration of this work, we had no idea of a continuous function able to give access to all 

𝜁(𝑠) values. It is research of a set of Lebesgue measure (1 − 𝐿𝑛2) and the way to obtain a partition able to give all 𝜁(𝑠) 

values that oriented us toward the Lambert W function. 

It is amazing that the partition of such a very simple set defined as the difference between the area of square unit and the 

area under the curve 𝑦 = 1 𝑥⁄   1 ≤ 𝑥 ≤ 2 contains all 𝜁(𝑠) values. This partition being given by Lambert W function 

values. Of course, this deep link is important for a better understanding of prime numbers distribution, and this subject had 

been already discussed in (Visser, 2013). This author showed that prime counting function has upper and lower bonds that 

can be related to Lambert W function. Moreover, the numerous applications of this function in physics make also the role 

of Riemann zeta function in physics more evident. 

To conclude, new perspectives in both number theory and physics could be opened by the link between Riemann zeta 

function and Lambert W function established in this paper. 

References 

Apéry, R. (1979). Irrationnalité de 𝜁2 et 𝜁3. Astérisque, 61, 11-13. 

Ayoub, R. (1974). Euler and the zeta function. The Am. Math. Month., 81(10), 1067-1086. 

Baker, A. (1990). Transcendental number theory. Cambridge Univ. Press 2nd Ed. ISBN 978-0-521-39791-9.  

Chow, T. Y. (2018). What is a closed form number. The Am. Math. Month., 5(106), 440-448. 

https://doi.org/10.1080/00029890.1999.12005066 

Delplace, F. (2017). Apéry’s constant calculation and prime numbers distributions: A matrix approach. Int. J. Sci. Eng. 

& App. Sci., 10(3), 87-106. 

Delplace, F. (2019). The rectangular elastic membrane for Apéry’s and Catalan’s constants calculation. J. Math. Comp. 

Sci., 9(5), 590-604. https://doi.org/10.28919/jmcs/4143 

https://fr.wikipedia.org/wiki/Th%C3%A9or%C3%A8me_de_Ces%C3%A0ro_(th%C3%A9orie_des_nombres)
https://fr.wikipedia.org/wiki/Th%C3%A9or%C3%A8me_de_Ces%C3%A0ro_(th%C3%A9orie_des_nombres)
https://doi.org/10.28919/jmcs/4143


 

 

http://jmr.ccsenet.org                        Journal of Mathematics Research                       Vol. 14, No. 6; 2022 

12 

Lagarias, J. C. (2013). Euler’s constant: Euler’s work and modern developments. Bull. of the Am. Math. Soc., S 

0273-0979(2013)01423-X 

Mathar, R. J. (2009). Series of reciprocal powers of k-almost primes. arXiv:0803.0900v3 [math.NT]. 

Srivastava, H. M. (1999). Some rapidly converging series for zeta(2n+1). Proc. of the Am. Math. Soc., 127, 385-396. 

Srivastava, H. M. (2019). Some general families of the Hurwitz-Lerch Zeta functions and their applications: Recent 

developments and directions for further researches. Proc. Inst. Math. Mech. Nat. Acad. Sci. Azerbaijan, 45, 

234-269. 

Van der Poorten, A. (1979). A proof that Euler missed…Apéry’s proof of the irrationality of 𝜁(3). The Math. Intellig., 1, 

196-203. https://doi.org/10.1007/BF03028234. 

Visser, M. (2013). Primes and the Lambert W function. arXiv:1311.2324 [math.NT]. 

 

Copyrights 

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 

https://doi.org/10.1007/BF03028234
http://creativecommons.org/licenses/by/4.0/

