The Infimum Norm of Completely Positive Maps
- Ching Yun Suen
Abstract
Let A be a unital C* -algebra, let L: A→B(H) be a linear map, and let ∅: A→B(H) be a completely positive linear map. We prove the property in the following: is completely positive}=inf {||T*T+TT*||1/2: L= V*TπV which is a minimal commutant representation with isometry} . Moreover, if L=L* , then is completely positive . In the paper we also extend the result is completely positive}=inf{||T||: L=V*TπV} [3 , Corollary 3.12].
- Full Text: PDF
- DOI:10.5539/jmr.v14n1p51
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org