Killing Tensor Fields of Third Rank on a Two-Dimensional Riemannian Torus
- Vladimir A. Sharafutdinov
Abstract
A rank m symmetric tensor field on a Riemannian manifold is called a Killing field if the symmetric part of its covariant derivative is equal to zero.
Such a field determines the first integral of the geodesic flow which is a degree m homogeneous polynomial in velocities. There exist global isothermal coordinates on a two-dimensional Riemannian torus such that the metric is of the form ds^2= λ(z)|dz|^2 in the coordinates. The torus admits a third rank Killing tensor field if and only if the function λ satisfies the equation R(∂/∂z(λ(c∆^-1λ_zz+a))= 0 with some complex constants a and c≠0. The latter equation is equivalent to some system of quadratic equations relating Fourier coefficients of the function λ. If the functions λ and λ + λ_0 satisfy the equation for a real constant λ0, 0, then there exists a non-zero Killing vector field on the torus.
- Full Text: PDF
- DOI:10.5539/jmr.v14n1p1
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org