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Abstract

A rank m symmetric tensor field on a Riemannian manifold is called a Killing field if the symmetric part of its covariant
derivative is equal to zero. Such a field determines the first integral of the geodesic flow which is a degree m homogeneous
polynomial in velocities. There exist global isothermal coordinates on a two-dimensional Riemannian torus such that the
metric is of the form ds2 = λ(z)|dz|2 in the coordinates. The torus admits a third rank Killing tensor field if and only if the
function λ satisfies the equation<

( ∂
∂z
(
λ(c∆−1λzz + a)

))
= 0 with some complex constants a and c , 0. The latter equation

is equivalent to some system of quadratic equations relating Fourier coefficients of the function λ. If the functions λ and
λ + λ0 satisfy the equation for a real constant λ0 , 0, then there exists a non-zero Killing vector field on the torus.

Keywords: Killing tensor field, geodesic flow, integrable dynamical system

1. Introduction

We first recall the definition of a Killing tensor field on an arbitrary Riemannian manifold.

Given a Riemannian manifold (M, g), let S mτ′M be the bundle of rank m symmetric tensors. The latter notation will mostly
be abbreviated to S m assuming the manifold under consideration to be known from the context. The space C∞(S m) of
smooth sections of the bundle consists of rank m symmetric tensor fields. The sum S ∗ =

⊕∞

m=0 S m is a bundle of graded
commutative algebras with respect to the product f h = σ( f ⊗ h), where σ is the symmetrization. Recall that, for a
Riemannian manifold, the spaces of covariant and contravariant tensor fields of the same rank are canonically isomorphic;
we do not distinguish them. In particular, first rank tensor fields are identified with vector fields.

The differential operator d = σ∇ : C∞(S m) → C∞(S m+1), where ∇ is the covariant derivative with respect to the Levi-
Chivita connection, is called the inner derivative. A tensor field f ∈ C∞(S m) is said to be a Killing tensor field if

d f = 0. (1)

In the case of m = 1 we say on a Killing vector field. The operator d is related to the product by the Leibnitz formula
d( f h) = (d f )h + f (dh) that implies the statement: if f and h are Killing tensor fields, then f h is also a Killing field. A
Killing tensor field f ∈ C∞(S m) (m , 2) is said to be irreducible, if it cannot be represented as a finite sum f =

∑
i uivi,

where all ui and vi are Killing fields of positive ranks. In the case of m = 2 we additionally require f to be different of
cg (c = const). The requirement eliminates the metric tensor from irreducible Killing fields.

Being written in coordinates for a rank m tensor field, (1) is a system of
(

n+m
m+1

)
linear first order differential equations in(

n+m−1
m

)
coordinates of f , where n = dimM. Since the system is overdetermined, not every Riemannian manifold admits

nonzero Killing tensor fields. The two-dimensional case is of the most interest since the degree of the overdetermination
is equal to 1 in this case. In the two-dimensional case we obtain one equation on the metric g after eliminating all
coordinates of f from the system (1). The possibility of such elimination is rather problematic in the general case, but it
will be realized below in the case of m = 3 for a 2-torus.

Let π : T M → M be the tangent bundle. We denote points of the manifold T M by pairs (x, ξ), where x ∈ M and
ξ ∈ TxM. If (U; x1, . . . , xn) is a local coordinate system on M with the domain U ⊂ M, then the corresponding local
coordinate system (π−1(U); x1, . . . , xn, ξ1, . . . , ξn) is defined on T M, where ξ = ξi ∂

∂xi . A tensor field f ∈ C∞(S m) is written
as f = fi1...im dxi1 . . . dxim in local coordinates. Given a tensor field f ∈ C∞(S m), we define the function F ∈ C∞(T M) by
F(x, ξ) = fi1...im (x) ξi1 . . . ξim . The map f 7→ F is independent of the choice of local coordinates and identifies the algebra
C∞(S ∗) with the subalgebra of C∞(T M) which consists of functions polynomially depending on ξ.

1



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 14, No. 1; 2022

Let H be the vector field on T M generating the geodesic flow. It is expressed in coordinates by the equality

H = ξi ∂

∂xi − Γi
jk(x) ξ jξk ∂

∂ξi ,

where Γi
jk are Christoffel symbols of the metric g. Let ΩM ⊂ T M be the manifold of unit tangent vectors. Since the

geodesic flow preserves the norm of a vector, H can be considered as a first order differential operator on ΩM. The
operators d and H are related as follows: if f ∈ C∞(S m) and F = fi1...im ξ

i1 . . . ξim ∈ C∞(T M) is the corresponding
polynomial, then HF = (d f )i1...im+1 ξ

i1 . . . ξim+1 . In particular, f is a Killing tensor field if and only if HF = 0, i.e., iff F
is a first integral for the geodesic flow. Thus, the problem of finding Killing tensor fields is equivalent to the problem of
finding first integrals of the geodesic flow which polynomially depend on ξ.

Because of the relation to integrable dynamical systems, the problem has been considered by many mathematicians,
starting with classical works by (Darboux, 1891) and (Birkhoff, 1927), and is still investigated now. We do not present
corresponding references here because of the volume limitation and refer the reader to (Bolsinov & Fomenko, 2000)
where a large reference list is presented. In particular, metrics on surfaces are classified which admit irreducible Killing
tensor fields of rank 1 and 2. But as far as we know, the most of questions are open on metrics admitting irreducible
Killing tensor fields of rank ≥ 3.

We proceed to considering Killing tensor fields on the 2-torus. The following question remains open although it has been
considered in several works by (Kozlov & Denisova, 1995), (Matveev & Shevchishin, 2010), (Bialy & Mironov, 2011),
(Sharafutdinov, 2016).

(∗) Does there exist a Riemannian metric on the 2-torus which admits an irreducible Killing tensor field of rank m ≥ 3?

The present paper is devoted to the question for m = 3. The question remains open, our results are of a very particular
character. Nevertheless we hope the paper will serve for a further progress in this hard problem.

Recall that there exists a global isothermal coordinate system on the two-dimensional torus T2 furnished with a Riemanni-
an metric g, see (Bolsinov & Fomenko, 2000), §6.5. More precisely, there exists a lattice Γ ⊂ R2 = C such that T2 = C/Γ
and the metric g is expressed by the formula

g = λ(x, y)(dx2 + dy2) = λ(z)|dz|2 (z = x + iy), (2)

where λ(z) is a Γ-periodic smooth positive function on the plane. Global isothermal coordinates are defined up to changes
of the kind z = az′ + b or z = az̄′ + b with complex constants a , 0 and b. We will widely use changes z = az′ (0 , a ∈ C)
that geometrically mean the possibility to rotate the lattice Γ through an arbitrary angle around the origin and to stretch
(squeeze) the lattice with respect to the origin with an arbitrary positive coefficient.

The question (∗) is completely investigated in the cases of m = 1 and of m = 2. A Riemannian 2-torus admits a non-trivial
(not identically equal to zero) Killing vector field if and only if the metric is of the form (2) in some global isothermal
coordinate system, where

λ(x, y) = µ(x). (3)

The torus admits a second rank irreducible Killing tensor field if and only if the metric is of the form (2) in some global
isothermal coordinate system, where

λ(x, y) = µ(x) + ν(y) (4)

and both µ and ν are non-constant functions. Such metrics are named Liouville metrics.

We return to considering an arbitrary Riemannian torus (C/Γ, λ|dz|2). Since λ is a smooth Γ-periodic function, it can be
represented by the Fourier series

λ(x, y) =
∑

(n1,n2)∈Γ′
λ̂n ei(n1 x+n2y) (5)

with coefficients rapidly decaying as |n1| + |n2| → ∞. Here

Γ′ = {k = (k1, k2) ∈ R2 | k1n1 + k2n2 ∈ 2πZ for all n = (n1, n2) ∈ Γ}

is the dual lattice for Γ. The following statement is one of results of the present work.

Theorem 1. A Riemannian torus (C/Γ, λ|dz|2) admits a non-trivial rank 3 Killing tensor field if and only if Fourier
coefficients of the function λ satisfy the equations∑

k∈Γ′\{0}

c1(−n1k2
1 +2n2k1k2+n1k2

2) + c2(−n2k2
1−2n1k1k2+n2k2

2)

k2
1 + k2

2

λ̂kλ̂n−k = (a1n1 + a2n2)λ̂n (6)
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for all n ∈ Γ′ with some real constants (a1, a2) and (c1, c2) , (0, 0).

The system (6) can be written as one pseudodifferential equation. To this end we observe that the inverse operator for the
Laplacian ∆ = ∂2

∂x2 + ∂2

∂y2 can be defined on the space of Γ-periodic functions by

∆−1ei(n1 x+n2y) = −
1

n2
1 + n2

2

ei(n1 x+n2y) (0 , n ∈ Γ′), ∆−1 const = 0. (7)

For a real Γ-periodic function λ ∈ C2(R2), the system (6) is equivalent to the equation

∂

∂z
(
λ(c∆−1λzz + a)

)
+
∂

∂z̄
(
λ(c̄∆−1λz̄z̄ + ā)

)
= 0, (8)

where a = 1
4 (a1 + ia2) and c = c1 + ic2 , 0. The equation (8) can be considered as the result of the above-mentioned

elimination of coordinates of the field f from the system (1).

For every real function µ ∈ C∞(R) and every pair of real constants (α, β), the function

λ = µ(αx + βy) (9)

solves the equation (8) with respectively chosen constants a and c. One can easily find conditions on the function µ
and coefficients (α, β) which guarantee Γ-periodicity of the function (9). Such solutions will be called one-dimensional
solutions. The geometric sense of such solutions is obvious: If the equation (8) possesses a Γ-periodic one-dimensional
solution, then the metric can be transformed to the form (2)–(3) by some rotation of the lattice Γ and the torus admits a
non-trivial Killing vector field f . In such a case f 3 = f ⊗ f ⊗ f is the reducible Killing tensor field of third rank. We are
thus interested in looking for solutions to the equation (8) (or system 6) which are not one-dimensional ones.

Following (Kozlov & Denisova, 1995), we define the spectrum of a Γ-periodic function λ ∈ C∞(R2) as the set of nodes n
of the lattice Γ′ such that λ̂n , 0. A Γ-periodic solution to the equation (8) is a one-dimensional solution if and only if its
spectrum is contained in the intersection L ∩ Γ′, where L ⊂ R2 is a line through the origin.

For m = 3 the question (∗) is equivalent to the following one:

(∗∗) Does there exist a lattice Γ ⊂ R2 such that the equation (8) (or system (6)) has a Γ-periodic positive solution
λ ∈ C∞(R2) which is not a one-dimensional solution?

The system (6) involves four real constants (a1, a2, c1, c2). It is clear that only three pairwise ratios (a1 : a2 : c1 : c2) are
essential. We emphasize that a lattice Γ′ is also considered as an unknown in (6). Up to rotation and homothety, a lattice is
determined by two real constants. Thus the system (6) involves five real constants that should be considered as unknowns
as well as Fourier coefficients λ̂k.

Reality of the function λ is guaranteed by the following parity requirement for a solution to the system (6):

λ̂−k = λ̂k (k ∈ Γ′). (10)

Smoothness of λ is guaranteed by the decay condition: for every N ∈ N

|λ̂k | ≤ CN(k2
1 + k2

2 + 1)−N . (11)

Most probably, positiveness of λ is the most difficult requirement in the question (∗∗). The Bochner – Hinchin theorem,
that is popular in probability theory, allows to state the requirement in terms of Fourier coefficients λ̂n, see for example
(Borovkov, 1999). Unfortunately, the statement of Bochner – Hinchin’s theorem is not connected to the system (6) (at
least the author does not see such a connection). Therefore the following weaker version of the question (∗∗) seems to be
reasonable:

(∗∗∗) Does there exist a lattice Γ ⊂ R2 such that the equation (8) (or system (6)) has a Γ-periodic real solution λ ∈ C∞(R2)
which is not a one-dimensional solution and satisfies λ̂0 > 0?

In the cases of m = 1 and of m = 2, our problem has the following specifics. If a function λ is either of the form (3) or of
the form (4), then λ+λ0 is of the same form for any real constant λ0. Do the specifics preserve for m = 3? If the answer to
the question was positive, then the main difficulty of our problem (the positiveness requirement) would disappear. Indeed,
if λ ∈ C∞(R2) is a real Γ-periodic solution to the equation (8), then λ̃ = λ + λ0 is a positive function for a sufficiently
large constant λ0 and λ̃ is again a Γ-periodic solution to (8). However, the answer to the question is negative. In author’s
opinion, the following theorem is the main result of the present work.
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Theorem 2. The following statement is true for an arbitrary lattice Γ ⊂ R2. Let λ ∈ C∞(R2) be a real Γ-periodic solution
to the system (6). Assume that λ + λ0 is also a solution to the system (6) with some real constant λ0 , 0. Then λ is a
one-dimensional solution.

We explain the scheme of the proof of Theorem 2. The following statement is just an easy remark.

Proposition 3. Let λ ∈ C3(R2) be a real solution to the equation (8). Assume that λ+λ0 is also a solution to the equation
(8) with some real constant λ0 , 0. Then λ solves also the equation

cλzzz + c̄λz̄z̄z̄ = 0. (12)

Conversely, if a real function λ ∈ C3(R2) solves equations (8) and (12), then λ + λ0 also solves the equation (8) for any
real constant λ0.

The linear equation (12) can be easily investigated. In particular, the following statement holds.

Proposition 4. For every lattice Γ ⊂ R2 and for every complex constant c , 0 the following statement is true. A Γ-
periodic function λ ∈ C3(R2) solves the equation (12) if and only if its spectrum is contained in the union of three straight
lines passing through the origin and intersecting with each other at equal angles.

The system (6) is essentially simplified with the help of the latter proposition. The two-dimensional array {λ̂k}k∈Γ′ of
unknowns is replaced with three sequences {xn}n∈Z, {yn}n∈Z, {zn}n∈Z corresponding to three lines in Proposition 4. Besides
this, five above-mentioned constants can be eliminated from the system. In this way Theorem 2 is reduced to the following
statement.

Theorem 5. Let three sequences of complex numbers {xn}n∈Z\{0}, {yn}n∈Z\{0}, {zn}n∈Z\{0} constitute a solution to the system

xn1 yn2 − xn1+n2 zn2 + yn1+n2 z−n1 = 0 (n1 , 0, n2 , 0, n1 + n2 , 0). (13)

Assume additionally the solution to satisfy the parity condition

x−n = xn, y−n = yn, z−n = zn (14)

and the decay condition
∞∑

n=1

(|xn| + |yn| + |zn|) < ∞. (15)

Then it is a one-dimensional solution, i.e., one of the following three statements holds: (1) yn = zn = 0 for all n , 0, (2)
xn = zn = 0 for all n , 0, (3) xn = yn = 0 for all n , 0.

Remark. The author does not know whether Theorem 5 remains valid if the hypothesis (15) is either deleted or replaced
with the weaker one: |xn| + |yn| + |zn| → 0 as n→ ∞.

In Section 2, we prove Theorem 1 and derive the equation (8) from the latter theorem. We also present an alternative
version of the system (6), where Fourier coefficients are numbered by pairs of integers but not by nodes of a lattice.
Theorem 2 is reduced to Theorem 5 in Section 3. Last two sections are devoted to the proof of Theorem 5 which turns out
to be quite difficult.

2. Proof of Theorem 1

As a start point, we use the following statement proved in Lemma 4.1 of (Sharafutdinov, 2016).

Proposition 6. A Riemannian torus (T2, g) =
(
R2/Γ, λ(dx2 + dy2)

)
admits a non-trivial third rank Killing tensor field if

and only if, for some pair c = (c1, c2) , (0, 0) of real constants, the equation

∇∇u −
1
2

(∆gu)g = T c (16)

has a solution u ∈ C∞(R2) with Γ-periodic derivatives ux and uy. Here ∆g is the Laplace – Beltrami operator of the metric
g and T c is the symmetric second rank tensor field on the torus whose coordinates are defined by

T c
11 = −T c

22 =
1
2
λ(−c2λx + c1λy), T c

12 =
1
2
λ(c1λx + c2λy).

4
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(Unfortunately, there is the inaccuracy in the statement of Lemma 4.1 of (Sharafutdinov, 2016): the word “irreducible” is
written instead of “non-trivial”. I am sure the reader will easily understand this simple statement.)

Computing the coordinates of the tensor field from the left-hand side of (16) with the help of standard tensor analysis
formulas, we make sure that this equation is equivalent to the system

uxx − uyy − λ
−1λxux + λ−1λyuy = λ(−c2λx + c1λy),

2uxy − λ
−1λyux − λ

−1λxuy = λ(c1λx + c2λy).

We are interested in the consistency conditions for the system. It can be written in the form

∂(λ−1ux)
∂x

−
∂(λ−1uy)
∂y

= −c2λx + c1λy,
∂(λ−1ux)

∂y
+
∂(λ−1uy)
∂x

= c1λx + c2λy.

Introducing the functions
v = λ−1ux, w = λ−1uy, (17)

we arrive to the Cauchy – Riemann equations

vx − wy = −c2λx + c1λy, vy + wx = c1λx + c2λy. (18)

By (17), the consistency condition holds
∂(λv)
∂y
−
∂(λw)
∂x

= 0. (19)

Since ux, uy and λ are Γ-periodic functions, v and w are also Γ-periodic functions. Recall that we have written down the
Fourier series for λ, see (5). Let us write similar formulas for v and w:

v =
∑
n∈Γ′

v̂n ei(n1 x+n2y), w =
∑
n∈Γ′

ŵn ei(n1 x+n2y). (20)

Inserting these expressions into equations (18) and performing termwise differentiation of Fourier series, we obtain∑
n∈Γ′

(n1v̂n − n2ŵn)ei(n1 x+n2y) =
∑
n∈Γ′

(−c2n1 + c1n2)λ̂nei(n1 x+n2y),∑
n∈Γ′

(n2v̂n + n1ŵn)ei(n1 x+n2y) =
∑
n∈Γ′

(c1n1 + c2n2)λ̂nei(n1 x+n2y).

Equating coefficients at the same exponents, we arrive to the system

n1v̂n − n2ŵn = (−c2n1 + c1n2)λ̂n, n2v̂n + n1ŵn = (c1n1 + c2n2)λ̂n (n ∈ Γ′).

The system is uniquely solvable for n , 0:

v̂n =
−c2n2

1 + 2c1n1n2 + c2n2
2

|n|2
λ̂n, ŵn =

c1n2
1 + 2c2n1n2 − c1n2

2

|n|2
λ̂n.

The Fourier series (20) take now the form

v = v̂0 +
∑

k∈Γ′\{0}

−c2k2
1 + 2c1k1k2 + c2k2

2

|k|2
λ̂k ei(k1 x+k2y),

w = ŵ0 +
∑

k∈Γ′\{0}

c1k2
1 + 2c2k1k2 − c1k2

2

|k|2
λ̂k ei(k1 x+k2y).

Using these formulas and (5), we find Fourier series for the functions λv and λw:

λv =
∑
n∈Γ′

(
v̂0λ̂n +

∑
k∈Γ′\{0}

−c2k2
1 + 2c1k1k2 + c2k2

2

|k|2
λ̂kλ̂n−k

)
ei(n1 x+n2y),

λw =
∑
n∈Γ′

(
ŵ0λ̂n +

∑
k∈Γ′\{0}

c1k2
1 + 2c2k1k2 − c1k2

2

|k|2
λ̂kλ̂n−k

)
ei(n1 x+n2y).

5
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Substitute these expressions into the equation (19)

∂

∂y

∑
n∈Γ′

(
v̂0λ̂n +

∑
k∈Γ′\{0}

−c2k2
1 + 2c1k1k2 + c2k2

2

|k|2
λ̂kλ̂n−k

)
ei(n1 x+n2y)

−
∂

∂x

∑
n∈Γ′

(
ŵ0λ̂n +

∑
k∈Γ′\{0}

c1k2
1 + 2c2k1k2 − c1k2

2

|k|2
λ̂kλ̂n−k

)
ei(n1 x+n2y) = 0.

After termwise differentiation of series, the equation becomes∑
n∈Γ′

(
(v̂0n2 − ŵ0n1)λ̂n

+
∑

k∈Γ′\{0}

n2(−c2k2
1 + 2c1k1k2 + c2k2

2) − n1(c1k2
1 + 2c2k1k2 − c1k2

2)
|k|2

λ̂kλ̂n−k

)
ei(n1 x+n2y) = 0.

Equating coefficients of the series on the left-hand side to zero, we arrive to equations (6), where a1 = ŵ0, a2 = −v̂0. It
remains to notice that a1 and a2 are real constants since v and w are real functions. Theorem 1 is proved.

The equivalence of the equation (8) and system (6) is proved by a straightforward calculation. To this end one finds the
Fourier series of the function from the left-hand side of (8) on using (5), (7) and well known formulas

∂z =
1
2

(∂x − i∂y), ∂z̄ =
1
2

(∂x + i∂y).

Then, equating coefficients of the resulting Fourier series to zero, we again arrive to (6). These arguments are invertible.

In formulas (5) and (8), Fourier coefficients of the function λ are numbered by nodes of the lattice Γ′. How do these
formulas look like if the Fourier coefficients are numbered by pairs of integers? Let (e1, e2) be a basis of the lattice Γ′.
Since our problem is invariant under rotations and homotheties of the lattice, we can assume without lost of generality
that e1 = (1, 0). Let e2 = (b, d). We can assume that d > 0 since (e1,−e2) is also a basis. The pair (e1, ke1 + e2) is again a
basis of Γ′ for every integer k and ke1 + e2 = (b + k, d). Therefore we can assume without lost of generality that b ∈ [0, 1).
Thus, the lattice Γ′ is determined by two parameters b ∈ [0, 1) and d > 0. The vectors e1 = (1, 0) and e2 = (b, d) constitute
the basis of Γ′. Every node m = (m1,m2) ∈ Γ′ is uniquely represented in the form

m = n1e1 + n2e2 = (n1 + bn2, dn2) (n1, n2 ∈ Z). (21)

Let us reproduce formula (5)
λ(x, y) =

∑
m∈Γ′

λ̂m1,m2 ei(m1 x+m2y).

After the change (21), the formula takes the form

λ(x, y) =
∑
n∈Z2

λ̂n1+bn2,dn2 ei((n1+bn2)x+dn2y).

Let us introduce the notation that will be used in the rest of the paper

λ̌n1,n2 = λ̂n1+bn2,dn2 (n1, n2 ∈ Z).

Thus, λ̌n1,n2 are Fourier coefficients of the function λ numbered by pairs of integers. The Fourier series of a Γ-periodic
function λ looks now as follows:

λ(x, y) =
∑

(n1,n2)∈Z2

λ̌n1,n2 ei((n1+bn2)x+dn2y).

By the same change (21), the system (8) is transformed to the form∑
(k1,k2)∈Z2\{(0,0)}

ψ(n1, n2; k1, k2; c1, c2; b, d) λ̌k1,k2 λ̌n1−k1,n2−k2 = (a1n1 + a2n2)λ̌n1,n2 , (22)

where
ψ(n1, n2; k1, k2; c1, c2; b, d) = c1ψ1(n1, n2; k1, k2; b, d) + c2ψ2(n1, n2; k1, k2; b, d), (23)
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ψ1(n1, n2; k1, k2; b, d) = d
n2k2

1 + 2(n1 + 2bn2)k1k2 +
(
2bn1 + (3b2 − d2)n2

)
k2

2

(k1 + bk2)2 + d2k2
2

, (24)

ψ2(n1, n2; k1, k2; b, d) =

=
−(n1+bn2)k2

1 + 2
(
− bn1+(d2−b2)n2

)
k1k2 +

(
(d2−b2)n1 + b(3d2−b2)n2

)
k2

2

(k1 + bk2)2 + d2k2
2

.
(25)

At the same time, we had to change the value of the constant a2 in accordance with the formula a2 := ba1 + da2. However,
the pair of constants (a1, ba1 + da2) is as arbitrary as the pair (a1, a2).

3. Proof of Theorem 2

We first present the proof of Proposition 3.

Let λ ∈ C3(R2) be a real solution to the equation (8). Assume that the function λ + λ0 also solves the equation (8) with
some real constant λ0 , 0, i.e.,

∂

∂z

(
(λ + λ0)

(
c∆−1(λ + λ0)zz + a

))
+
∂

∂z̄

(
(λ + λ0)

(
c̄∆−1(λ + Λ0)z̄z̄ + ā

))
= 0.

After the obvious simplification, this takes the form

∂

∂z

(
λ(c∆−1λzz + a)

)
+
∂

∂z̄

(
λ(c̄∆−1λz̄z̄ + ā)

)
+ λ0∆−1(cλzzz + c̄λz̄z̄z̄) = 0.

Subtracting the equation (8) from this equality, we obtain ∆−1(cλzzz + c̄λz̄z̄z̄) = 0. Applying the operator ∆ to the latter
equation, we arrive to (12). These arguments are invertible.

Next we present the proof of Proposition 4.

Differentiating the Fourier series (5), we have

λzzz = −
i
8

∑
n∈Γ′

(n1 − in2)3λ̂n ei(n1 x+n2y), λz̄z̄z̄ = −
i
8

∑
n∈Γ′

(n1 + in2)3λ̂n ei(n1 x+n2y).

Substituting this expression into (12), we arrive to the equation

<
(
c(n1 − in2)3) = 0

which should hold for nodes (n1, n2) of the lattice Γ′ belonging to the spectrum of the function λ. If c = c1 + ic2, then the
latter equation can be written in the form

c1(n2
1 − 3n2

2)n1 + c2(3n2
1 − n2

2)n2 = 0. (26)

Without lost of generality we can assume that c1 = − sin 3α, c2 = cos 3α in the equation (26) with some real α. We set

also n1 =

√
n2

1 + n2
2 cosϕ, n2 =

√
n2

1 + n2
2 sinϕ. Then the equation (26) takes the form sin(3ϕ− 3α) = 0. Its solutions are:

ϕ = k π3 + α (k ∈ Z). This proves Proposition 4.

We proceed to the proof of Theorem 2 assuming Theorem 5 to be valid.

Let a lattice Γ ⊂ R2 and real Γ-periodic function λ ∈ C∞(R2) satisfy hypotheses of Theorem 2. By Proposition 4, the
spectrum of the function λ is contained in the union of three lines L0 ∪ L1 ∪ L2 passing through the origin and intersecting
with each other at the angle π/3. We have to prove that λ is a one-dimensional solution, i.e., the spectrum of λ is contained
in one of these lines. Contrary to the assertion of the theorem, suppose that each of the lines contains at least one point
belonging to the spectrum of λ and different of the origin (the case when the spectrum lies on two lines is considered in a
similar way with many simplifications). Using the invariance of our problem under rotations, we can assume that

L0 = {(x, 0) | x ∈ R}, L1 = {(x,
√

3x) | x ∈ R}, L2 = {(x,−
√

3x) | x ∈ R}. (27)

Since the line L0 contains a point of the spectrum of λ other than the origin, there are non-zero nodes of the lattice Γ′ on
the line L0. Let e1 = (x0, 0) (x0 > 0) be the closest to the origin point of the kind (x, 0) ∈ Γ′ ∩ L0 (x > 0). Using the
invariance of our problem with respect to homotheties centered at the origin, we can assume that x0 = 1, i.e., e1 = (1, 0).
Let us demonstrate that the lattice Γ′ has a basis of the form

e1 = (1, 0), e2 = (b, d)
(
b ∈ [0, 1), d > 0

)
. (28)

7
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Indeed, let
(
e′1 = (e′11 , e

′2
1 ), e′2 = (e′12 , e

′2
2 )

)
be an arbitrary basis of Γ′. We represent the vector e1 as e1 = n1e′1 +n2e′2 (n1, n2 ∈

Z). Then (n1, n2) , 0 and (n1, n2) are relatively prime integers since e1 is the point of the set L0 ∩ Γ′ closest to the origin,

other than the origin. There exists a pair of integers (l1, l2) such that n1l2 − n2l1 = 1. The matrix A =

(
n1 n2
l1 l2

)
belongs

to S L(2,Z) and hence the pair of vectors (
e1

e′′2

)
= A

(
e′1
e′2

)
is a basis of the lattice Γ′. Starting with the basis (e1, e′′2 ) and repeating our arguments presented before formula (21), we
find a basis of Γ′ of the form (28).

Let (x,
√

3x) be the node of the lattice Γ′ closest to the origin, other then the origin and such that x > 0. This means the
existence of the pair (p1, p2) of relatively prime integers such that (x,

√
3x) = p1(1, 0) + p2(b, d), i.e.,

x = p1 + p2b,
√

3x = p2d (p2 > 0). (29)

Similarly, let (x′,−
√

3x′) be the node of the lattice Γ′ closest to the origin, other then the origin and such that x′ > 0. This
means the existence of the pair (q1, q2) of relatively prime integers such that (x′,−

√
3x′) = q1(1, 0) + q2(b, d), i.e.,

x′ = q1 + q2b, −
√

3x′ = q2d (q2 > 0). (30)

From (29)–(30)
−b + d/

√
3 = p1/p2, −b − d/

√
3 = q1/q2.

Solving the system, we have

b = −
1
2

( p1

p2
+

q1

q2

)
, d =

√
3

2

( p1

p2
−

q1

q2

)
. (31)

Equalities (31) allow us to eliminate the constants b and d from all our formulas. The lattice Γ′ is now determined by two
pairs (p1, p2 > 0) and (q1, q2 > 0) of relatively prime integers. But the pairs should satisfy some inequalities. Indeed, the
conditions d > 0 and b ∈ [0, 1) mean that

p1q2 − p2q1 > 0, −2p2q2 < p1q2 + p2q1 ≤ 0. (32)

This is equivalent to the system of inequalities

p2 > 0, q2 > 0, q1 < 0, max
{q1

q2
p2,−

(
2 +

q1

q2

)
p2

}
< p1 ≤ −

q1

q2
p2. (33)

One can easily prove the converse statement: If two pairs of relatively prime integers (p1, p2) and (q1, q2) satisfy (33),
then the reals (b, d), defined by (31), satisfy b ∈ [0, 1), d > 0 and the lattice Γ′ = {n1(1, 0) + n2(b, d) | (n1, n2) ∈ Z2} has
the following intersections with the lines (27):

L0 ∩ Γ′ = {(n, 0) | n ∈ Z}, L1 ∩ Γ′ = {
(
n(p1 + bp2), ndp2

)
| n ∈ Z},

L2 ∩ Γ′ = {
(
n(q1 + bq2), ndq2

)
| n ∈ Z}.

In the case of (p1, p2) = (0, 1), (q1, q2) = (−1, 1), the lattice Γ′ is the result of tiling the plane with regular triangles.
This grid is sometimes called a honeycomb. The author used this lattice to control many of formulas below. Although the
honeycomb is not mentioned in the rest of the paper, the reader is recommended to keep this simplest example in his/her
mind.

Since the spectrum of the function λ is contained in the union of three lines (27), the Fourier coefficients λ̌n1,n2 , introduced
in the previous section, are expressed by

λ̌n1,n2 =


αn if (n1, n2) = (n, 0),
βn if (n1, n2) = (np1, np2),
γn if (n1, n2) = (nq1, nq2),
0 otherwise,

(34)

where {αn}n∈Z, {βn}n∈Z, {γn}n∈Z are three sequences of complex numbers which are considered as unknowns in what fol-
lows. In terms of these unknowns, the parity condition (10) is written as

α−n = αn, β−n = βn, γ−n = γn; (35)

8
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and the decay condition (11) takes the form

|αn| + |βn| + |γn| ≤ CN(|n| + 1)−N for every n ∈ N. (36)

Besides this, the following equalities should hold:

α0 = β0 = γ0 = λ̌0,0.

Due to (34), the system (22) admits several simplifications. First of all the double sum is replaced with three single sums,
i.e., the equation (22) takes the form∑

k∈Z\{0}
ψ(n1, n2; k, 0; c11, c2; b, d)αkλ̌n1−k,n2

+
∑

k∈Z\{0}
ψ(n1, n2; p1k, p2k; c1, c2; b, d) βkλ̌n1−p1k,n2−p2k

+
∑

k∈Z\{0}
ψ(n1, n2; q1k, q2k; c1, c2; b, d) γkλ̌n1−q1k,n2−q2k = (a1n1 + a2n2)λ̌n1,n2 .

(37)

Coefficients of the equation (37) are expressed by

ψ(n1, n2; k, 0; c1, c2; b, d) = −2c2n1 +
(
c1 + c2

( p1

p2
+

q1

q2

))
n2, (38)

ϕ(n1, n2; p1, p2; q1, q2; c1, c2) := ψ(n1, n2; p1k, p2k; c1, c2; b, d)

= c1q2
p2n1 − p1n2

p1q2 − p2q1
+ c2

(
n1 +

p3
1

p2
− 4 q1

q2
p2

1 + 5 q2
1

q2
2
p1 p2 − 2 q3

1

q3
2
p2

2(
p1 −

q1
q2

p2
)2 n2

)
,

(39)

ϕ(n1, n2; q1, q2; p1, p2; c1, c2) := ψ(n1, n2; q1k, q2k; c1, c2; b, d)

= −c1 p2
q2n1 − q1n2

p1q2 − p2q1
+ c2

(
n1 +

q3
1

q2
− 4 p1

p2
q2

1 + 5 p2
1

p2
2
q1q2 − 2 p3

1

p3
2
q2

2(
q1 −

p1
p2

q2
)2 n2

)
.

(40)

These formulas are obtained from (23)–(25) by substituting values (31) for the parameters (b, d) and by substituting the
values (k1, k2) = (k, 0), (k1, k2) = (p1k, p2k) and (k1, k2) = (q1k, q2k) respectively. At the same time we have changed
the values of constants as c1 := c1/d, c2 := 2c2. The most important (although quite obvious) circumstance is that the
coefficients (38)–(40) are independent of the summation variable k. In virtue of the circumstance, the equation (37) can
be rewritten as (

− 2c2n1 +
(
c1 + c2

( p1

p2
+

q1

q2

))
n2

) ∑
k∈Z\{0}

αkλ̌n1−k,n2

+ϕ(n1, n2; p1, p2; q1, q2; c1, c2)
∑

k∈Z\{0}
βkλ̌n1−p1k,n2−p2k

+ϕ(n1, n2; q1, q2; p1, p2; c1, c2)
∑

k∈Z\{0}
γkλ̌n1−q1k,n2−q2k = (a1n1 + a2n2)λ̌n1,n2 .

(41)

Possible simplification are still not exhausted. The second factor of each summand on the left-hand side of (41) can be
expressed through (α, β, γ), as well as the right-hand side of the equation. To this end we have to consider separately four
possible cases corresponding four lines on the right-hand side of the formula (34).

First of all we observe that the equation (41) tautologically holds in the case of (n1, n2) = (0, 0) (both sides of the equation
are equal to zero). This case is excluded from our further considerations.

We first set (n1, n2) = (n, 0) in (41), where n , 0. In other words, we consider the equation (41) when the node of the
lattice Γ′, numbered by the pair (n1, n2), belongs to the line L0. In this case the equation (41) is of the form

− 2nc2

∑
k∈Z\{0}

αkαn−k

+ ϕ(n, 0; p1, p2; q1, q2; c1, c2)
∑

k∈Z\{0}
βkλ̌n−p1k,−p2k

+ ϕ(n, 0; q1, q2; p1, p2; c1, c2)
∑

k∈Z\{0}
γkλ̌n−q1k,−q2k = na1αn.

(42)
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Let us pay our attention to the zeroth Fourier coefficient λ̌0,0 = α0 = β0 = γ0. By the second statement of Proposition 3,
the coefficient cannot participate in the system (41) since it plays the role of the constant λ0 from Proposition 3. On the
other hand, in the case of c2 , 0, there is the term −2nc2αnα0 on the left-hand side of the equation (42) which does not
cancel with other terms. It remains to observe that all αn (n , 0) cannot be equal to zero since the line L0 contains at
least one point from the spectrum of λ which is not the origin. We thus arrive to the important conclusion: c2 = 0. Since
(c1, c2) , (0, 0) and only pairwise ratios (a1 : a2 : c1 : c2) are essential, we can assume without lost of generality that
(c1, c2) = (1, 0).

Formulas (39)–(40) are now simplified to the following one:

ϕ(n1, n2; p1, p2; q1, q2) = q2
p2n1 − p1n2

p1q2 − p2q1
. (43)

Of course the constants (c1, c2) = (1, 0) do not participate in the list of arguments anymore. In particular,

ϕ(n, 0; p1, p2; q1, q2) = −ϕ(n, 0; q1, q2; p1, p2) =
p2q2

p1q2 − p2q1
n

and the equation (42) takes the form∑
k∈Z\{0}

βkλ̌n−p1k,−p2k −
∑

k∈Z\{0}
γkλ̌n−q1k,−q2k = a1

p1q2 − p2q1

p2q2
αn (n , 0). (44)

We first analyze the first sum on the left-hand side of (44). Its summand βkλ̌n−p1k,−p2k can be nonzero in three cases only:

(1) λ̌n−p1k,−p2k = αm if (n − p1k,−p2k) = (m, 0) for some integer m,

(2) λ̌n−p1k,−p2k = βm if (n − p1k,−p2k) = (mp1,mp2) for some integer m,

(3) λ̌n−p1k,−p2k = γm if (n − p1k,−p2k) = (mq1,mq2) for some integer m.

The first case is impossible since p2k , 0. Let us demonstrate that the second case is also impossible. Indeed, in such a
case

n − p1k = mp1, −p2k = mp2.

From this n = 0 that contradicts the assumption n , 0. Thus, the third case remains when

n − p1k = mq1, −p2k = mq2.

From this
k =

q2

p1q2 − p2q1
n, m = −

p2

p1q2 − p2q1
n.

Therefore the integers p2n and q2n should be divisible by p1q2 − p2q1. Thus,

∑
k∈Z\{0}

βkλ̌n−p1k,−p2k =


βrγs if q2n = r(p1q2 − p2q1)

and p2n = −s(p1q2 − p2q1) (r, s ∈ Z);
0 otherwise.

(45)

Next, we analyze the second sum on the left-hand side of (44). Its summand γkλ̌n−q1k,−q2k can be nonzero in three cases
only:

(1) λ̌n−q1k,−q2k = αm if (n − q1k,−q2k) = (m, 0) for some integer m,

(2) λ̌n−q1k,−q2k = βm if (n − q1k,−q2k) = (mp1,mp2) for some integer m,

(3) λ̌n−q1k,−q2k = γm if (n − q1k,−q2k) = (mq1,mq2) for some integer m.

The first case is impossible since q2k , 0. Let us demonstrate that the third case is also impossible. Indeed, in such a case

n − q1k = mq1, −q2k = mq2.

from this n = 0 that contradicts to the assumption n , 0. Thus, the second case remains when

n − q1k = mp1, −q2k = mp2.

10
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From this
k = −

p2

p1q2 − p2q1
n, m =

q2

p1q2 − p2q1
n.

Therefore the integers p2n and q2n should be divisible by p1q2 − p2q1. Thus,

∑
k∈Z\{0}

γkλ̌n−q1k,−q2k =


βrγs if q2n = r(p1q2 − p2q1)

and p2n = −s(p1q2 − p2q1) (r, s ∈ Z);
0 otherwise.

(46)

Right-hand sides of formulas (45) and (46) coincide. Therefore the left-hand side of the equation (44) is equal to zero for
any n , 0. Since αn is not equal to zero at least for one n , 0, we arrive to the second important conclusion: a1 = 0. The
equation (44) itself becomes a tautology and we forget it.

Now, we set (n1, n2) = (np1, np2) in the equation (41), where n , 0. The pair (n1, n2) numbers a node of the lattice Γ′

belonging to the line L1. Taking the equalities a1 = 0 and (c1, c2) = (1, 0) into account, the equation looks as follows:

np2

∑
k∈Z\{0}

αkλ̌np1−k,np2 + ϕ(np1, np2; p1, p2; q1, q2)
∑

k∈Z\{0}
βkλ̌np1−kp1,np2−kp2

+ ϕ(np1, np2; q1, q2; p1, p2)
∑

k∈Z\{0}
γkλ̌np1−kq1,np2−kq2 = na2 p2βn.

(47)

By (43),
ϕ(np1, np2; p1, p2; q1, q2) = 0, ϕ(np1, np2; q1, q2; p1, p2) = −p2n

and the equation (47) is simplified to the following one:∑
k∈Z\{0}

αkλ̌np1−k,np2 −
∑

k∈Z\{0}
γkλ̌np1−kq1,np2−kq2 = a2βn. (48)

We first analyze the first sum on the left-hand side of (48). Its summand αkλ̌np1−k,np2 can be nonzero in three cases only:

(1) λ̌np1−k,np2 = αm if (np1 − k, np2) = (m, 0) for some integer m,

(2) λ̌np1−k,np2 = βm if (np1 − k, np2) = (mp1,mp2) for some integer m,

(3) λ̌np1−k,np2 = γm if (np1 − k, np2) = (mq1,mq2) for some integer m.

The first case is impossible since np2 , 0. Let us demonstrate that the second case is also impossible. Indeed, in such a
case

np1 − k = mp1, np2 = mp2.

From this k = 0 that contradicts to the condition k ∈ Z \ {0}. Thus, the third case remains when

np1 − k = mq1, np2 = mq2.

From this
k =

p1q2 − p2q1

q2
n, m =

p2

q2
n.

Hence the integer p2n must be divisible by q2. If p2n = rq2 (r ∈ Z), then k = p1n − q1r and (np1 − k, np2) = (rq1, rq2).
Thus, ∑

k∈Z\{0}
αkλ̌np1−k,np2 =

{
αp1n−q1rγr if p2n = rq2 (r ∈ Z \ {0}),
0 otherwise. (49)

Next, we analyze the second sum on the left-hand side of (48). Its summand
γkλ̌np1−kq1,np2−kq2 can be nonzero in three cases only:

(1) λ̌np1−kq1,np2−kq2 = αm if (np1 − kq1, np2 − kq2) = (m, 0) for some integer m,

(2) λ̌np1−kq1,np2−kq2 = βm if (np1 − kq1, np2 − kq2) = (mp1,mp2) for some integer m,

(3) λ̌np1−kq1,np2−kq2 = γm if (np1 − kq1, np2 − kq2) = (mq1,mq2) for some integer m.

The second case is impossible. Indeed, in such a case the pair (k,m) solves the system

q1k + p1m = p1n, q2k + p2m = p2n

11



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 14, No. 1; 2022

with nonzero determinant. The solution to the system is k = 0,m = n. But k , 0 in (48).

The third case is also impossible. Indeed, in such a case the pair (n, k + m) solves the homogeneous system

p1n − q1(k + m) = 0, p2n − q2(k + m) = 0

with nonzero determinant. Hence n = 0. But n , 0 in (48).

Thus, the first case remains. In this case we have the system

np1 − kq1 = m, np2 − kq2 = 0.

From this
k =

p2

q2
n, m =

p1q2 − p2q1

q2
n.

Therefore p2n must be divisible by q2. If p2n = rq2 (r ∈ Z \ {0}), then k = r and m = p1n − q1r. Thus,

γkλ̌np1−kq1,np2−kq2 =

{
γrαp1n−q1r, if p2n = rq2 (r ∈ Z \ {0}),
0 otherwise.

Hence ∑
k∈Z\{0}

γkλ̌np1−kq1,np2−kq2 =

{
γrαp1n−q1r, if p2n = rq2 (r ∈ Z \ {0}),
0 otherwise. (50)

Right-hand sides of formulas (49) and (50) coincide. Therefore the left-hand side of the equation (48) is equal to zero for
any n , 0. Since βn is not equal to zero at least for one n , 0, we arrive to the conclusion: a2 = 0. The equation (48) itself
becomes a tautology and we forget it.

We have thus proved that
(a1, a2) = (0, 0), (c1, c2) = (1, 0). (51)

In the same way we make sure with the help of (51) that the equation (41) is a tautology in the case when the pair (n1, n2)
numbers a node of the lattice Γ′ belonging to the line L2, i.e., for (n1, n2) = (nq1, nq2) (n , 0).

Finally, we consider the equation (41) for a pair (n1, n2) corresponding to a node of the lattice Γ′ which does not belong
to L0 ∪ L1 ∪ L2, i.e., when

(n1, n2) , (0, 0), (n1, n2) , (n, 0), (n1, n2) , (np1, np2), (n1, n2) , (nq1, nq2). (52)

The right-hand side of (41) is equal to zero and the equation looks as follows:

n2(p1q2 − p2q1)
∑

k∈Z\{0}
αkλ̌n1−k,n2 + q2(p2n1 − p1n2)

∑
k∈Z\{0}

βkλ̌n1−p1k,n2−p2k

− p2(q2n1 − q1n2)
∑

k∈Z\{0}
γkλ̌n1−q1k,n2−q2k = 0.

(53)

We have used (43) and (c1, c2) = (1, 0).

We first analyze the first sum on the left-hand side of (53). By (52), n2 , 0. Therefore the summand of the sum αkλ̌n1−k,n2

can be nonzero in two cases only:

(1) λ̌n1−k,n2 = βm if (n1 − k, n2) = (mp1,mp2) for some integer m,

(2) λ̌n1−k,n2 = γm if (n1 − k, n2) = (mq1,mq2) for some integer m.

In the first case we have the system
n1 − k = mp1, n2 = mp2.

Solving the system, we obtain m = n2
p2
, n1 − k = n1 −

p1
p2

n2. Hence n2 must be divisible by p2. If n2 = rp2 (r ∈ Z \ {0}),
then m = r, n1 − k = rp1. Thus,

αkλ̌n1−k,n2 = αn1−rp1βr, if n2 = rp2 and k = n1 − rp1 (r ∈ Z \ {0}).

12
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The second case differs of the first one by the transposition p↔ q only. Therefore

αkλ̌n1−k,n2 = αn1−sq1γs, if n2 = sq2 and k = n1 − sq1 (s ∈ Z \ {0}).

It should be especially noted that the first and second cases take place simultaneously if rp2 = sq2 for some r, s ∈ Z \ {0}.
But they occur for different values of k. Indeed, otherwise the pair (r, s) would solve the linear homogeneous system

rp2 = sq2, rp1 = sq1

with nonzero determinant. Hence (r, s) = (0, 0) that contradicts to the condition n2 , 0.

From what was said in the previous paragraph it follows that

∑
k∈Z\{0}

αkλ̌n1−k,n2 =


αn1−rp1βr + αn1−sq1γs if n2 = rp2 = sq2 (r, s ∈ Z \ {0});
αn1−rp1βr if n2 = rp2 (r ∈ Z \ {0}) but n2 is not divisible by q2;
αn1−rq1γr if n2 = rq2 (r ∈ Z \ {0}) but n2 is not divisible by p2;
0, if n2 is not divisible either by p2 or by q2.

(54)

Next, we analyze the second sum on the left-hand side of (53). Its summand
βkλ̌n1−p1k,n2−p2k can be nonzero in three cases only:

(1) λ̌n1−p1k,n2−p2k = αm if (n1 − p1k, n2 − p2k) = (m, 0) for some integer m,

(2) λ̌n1−p1k,n2−p2k = βm if (n1 − p1k, n2 − p2k) = (mp1,mp2) for some integer m,

(3) λ̌n1−p1k,n2−p2k = γm if (n1 − p1k, n2 − p2k) = (mq1,mq2) for some integer m.

The second case is impossible. Indeed, in such a case

n1 − p1k = mp1, n2 − p2k = mp2.

From this (n1, n2) =
(
(m + k)p1, (m + k)p2

)
that is prohibited by conditions (52).

In the first case we have the system
n1 − p1k = m, n2 − p2k = 0.

From this k = n2
p2

. Hence n2 must be divisible by p2. If n2 = rp2 (r ∈ Z), then k = r, m = n1 − rp1. Thus,

βkλ̌n1−p1k,n2−p2k = βrαn1−p1r if n2 = rp2 and k = r (r ∈ Z \ {0}).

In the third case we have the system
n1 − p1k = mq1, n2 − p2k = mq2.

From this
k =

q2n1 − q1n2

p1q2 − p2q1
, m =

−p2n1 + p1n2

p1q2 − p2q1
.

(Recall that p1q2 − p2q1 , 0, see (32).) The integers q2n1 − q1n2 and −p2n1 + p1n2 must be divisible by p1q2 − p2q1, i.e.,

q2n1 − q1n2 = s(p1q2 − p2q1), −p2n1 + p1n2 = t(p1q2 − p2q1) (s, t ∈ Z \ {0}).

This is equivalent to the system

n1 = sp1 + tq1, n2 = sp2 + tq2 (s, t ∈ Z \ {0}). (55)

Hence

βkλ̌n1−p1k,n2−p2k =

{
βsγt if n1 = sp1 + tq1, n2 = sp2 + tq2 (s, t ∈ Z \ {0}) and k = s;
0 otherwise. (56)

First and third cases have a nonempty intersection that is characterized by the relations

n1 = sp1 + tq1, n2 = rp2 = sp2 + tq2 (r, s, t ∈ Z \ {0}). (57)

From this (r − s)p2 = tq2, i.e., tq2 is divisible by p2. Conversely, if the relations (56) hold and tq2 is divisible by p2, then
the first case takes place.
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The situation when the first case takes place but the third case does not take is characterized by the following:

n2 = rp2 (r ∈ Z \ {0}), but the representation
n1 = sp1 + tq1, n2 = sp2 + tq2 (s, t ∈ Z \ {0}) is impossible.

(58)

The situation when the third case takes place but the first case does not take is characterized by the following:

n1 = sp1 + tq1, n2 = sp2 + tq2 (s, t ∈ Z \ {0}) and n2 is not divisible by p2. (59)

Now, we compute the sum
∑

k∈Z\{0}
βkλ̌n1−p1k,n2−p2k. It looks different in four cases:

(a) If relations (57) hold, then, by (55) and (56), the sum has only two nonzero summands corresponding to k = r and
k = s. These summands are different, i.e., r , s as is seen from (57). Thus,∑

k∈Z\{0}
βkλ̌n1−p1k,n2−p2k = αn1−p1rβr + βsγt,

if n1 = sp1 + tq1, n2 = rp2 = sp2 + tq2 (r, s, t ∈ Z \ {0}).
(60)

(b) If relations (58) hold, then the sum
∑

k∈Z\{0}
βkλ̌n1−p1k,n2−p2k contains only one nonzero summand corresponding to k = r.

Thus, ∑
k∈Z\{0}

βkλ̌n1−p1k,n2−p2k = αn1−p1rβr,

if n2 = rp2 (r ∈ Z \ {0}) but the representation
n1 = sp1 + tq1, n2 = sp2 + tq2 (s, t ∈ Z \ {0}) is impossible.

(61)

(c) If relations (59) hold, then the sum
∑

k∈Z\{0}
βkλ̌n1−p1k,n2−p2k has only one nonzero summand corresponding to k = s. Thus,

∑
k∈Z\{0}

βkλ̌n1−p1k,n2−p2k = βsγt,

if n1 = sp1 + tq1, n2 = sp2 + tq2 (s, t ∈ Z \ {0}) and n2 is not divisible by p2.

(62)

(d) Finally, the situation can occur when n2 is not divisible by p2 and the representation n1 = sp1+tq1, n2 = sp2+tq2 (s, t ∈
Z \ {0}) is impossible. In such a case none of relations (57)–(59) are fulfill and

∑
k∈Z\{0}

βkλ̌n1−p1k,n2−p2k = 0.

We unite formulas (60)–(62)

∑
k∈Z\{0}

βkλ̌n1−p1k,n2−p2k =



αn1−p1rβr + βsγt if
n1 = sp1 + tq1, n2 = rp2 = sp2 + tq2 (r, s, t ∈ Z \ {0});

αn1−p1rβr if n2 = rp2 (r ∈ Z \ {0}) but the representation
n1 = sp1 + tq1, n2 = sp2 + tq2 (s, t ∈ Z \ {0}) is impossible;

βsγt if n1 = sp1 + tq1, n2 = sp2 + tq2 (s, t ∈ Z \ {0})
and n2 is not divisible by p2;

0 if n2 is not divisible by p2 and the representation
n1 = sp1 + tq1, n2 = sp2 + tq2 (s, t ∈ Z \ {0}) is impossible.

(63)

The third sum on the left-hand side of (53) is obtained from the second sum by the transposition β↔ γ, p↔ q. Therefore
we just perform the transposition β↔ γ, p↔ q, s→ t in (63) to obtain

∑
k∈Z\{0}

γkλ̌n1−q1k,n2−q2k =



αn1−q1rγr + βsγt if
n1 = sp1 + tq1, n2 = rq2 = sp2 + tq2 (r, s, t ∈ Z \ {0});

αn1−q1rγr if n2 = rq2 (r ∈ Z \ {0}) but the representation
n1 = sp1 + tq1, n2 = sp2 + tq2 (s, t ∈ Z \ {0}) is impossible;

βsγt if n1 = sp1 + tq1, n2 = sp2 + tq2 (s, t ∈ Z \ {0})
and n2 is not divisible by q2;

0 if n2 is not divisible by q2 and the representation
n1 = sp1 + tq1, n2 = sp2 + tq2 (s, t ∈ Z \ {0}) is impossible.

(64)
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Now, we have to substitute expressions (54) and (63)–(64) into the equation (53). The substitution is not easy since each
of the expressions consists of four lines. Formally speaking, we have to consider 4×4×4 = 64 combinations. Fortunately,
the most of these combinations is logically impossible since they contain conditions contradicting to each other. An easy
but bulky analysis shows that there exist 7 logically possible versions of the equation (53). For our purposes, it suffices to
consider the following three versions.

Version 1. Assume that n2 is not divisible either by p2 or by q2 and the representation n1 = sp1 + tq1, n2 = sp2 + tq2 (s, t ∈
Z \ {0}) is possible. In such a case formulas (54) and (63)–(64) give∑

k∈Z\{0}
αkλ̌n1−k,n2 = 0,

∑
k∈Z\{0}

βkλ̌n1−p1k,n2−p2k = βsγt,
∑

k∈Z\{0}
γkλ̌n1−q1k,n2−q2k = βsγt.

Substituting these expressions into the equation (53), we obtain

n2(p1q2 − p2q1)βsγt = 0.

Since n2 , 0 and p1q2 − p2q1 , 0, we conclude βsγt = 0. Thus,

βsγt = 0 if n2 is not divisible either by p2 or by q2

and n1 = sp1 + tq1, n2 = sp2 + tq2 (s, t ∈ Z \ {0}).

 (65)

Version 2. Assume that

n2 = rp2 = uq2, n1 − rp2 , 0, n1 − uq2 , 0 (r, u ∈ Z \ {0})

and the representation n1 = sp1 + tq1, n2 = sp2 + tq2 (s, t ∈ Z \ {0}) is impossible. In such a case formulas (54), (63)–(64)
give ∑

k∈Z\{0}
αkλ̌n1−k,n2 = αn1−rp1βr + αn1−uq1γu,∑

k∈Z\{0}
βkλ̌n1−p1k,n2−p2k = αn1−p1rβr,

∑
k∈Z\{0}

γkλ̌n1−q1k,n2−q2k = αn1−q1uγu.

Substituting these values into (53), we obtain

p2(q2n1 − q1n2)αn1−rp1βr − q2(p2n1 − p1n2)αn1−uq1γu = 0
if n2 = rp2 = uq2, n1 − rp1 , 0, n1 − uq1 , 0, (r, u ∈ Z \ {0}) and the
representation n1 = sp1 + tq1, n2 = sp2 + tq2 (s, t ∈ Z \ {0}) is impossible.

 (66)

Version 3. Assume that

n2 = rp2 = uq2, n1 − rp2 , 0, n1 − uq2 , 0 (r, u ∈ Z \ {0})

and the representation n1 = sp1 + tq1, n2 = sp2 + tq2 (s, t ∈ Z \ {0}) is possible. In such a case formulas (54), (63)–(64)
give ∑

k∈Z\{0}
αkλ̌n1−k,n2 = αn1−rp1βr + αn1−uq1γu,∑

k∈Z\{0}
βkλ̌n1−p1k,n2−p2k = αn1−rp1βr + βsγt,

∑
k∈Z\{0}

γkλ̌n1−q1k,n2−q2k = αn1−uq1γu + βsγt.

Substituting these values into the equation (53), we obtain

p2(q2n1 − q1n2)αn1−rp1βr − q2(p2n1 − p1n2)αn1−uq1γu − n2(p1q2 − p2q1)βsγt = 0
if n2 = rp2 = uq2, n1 − rp1 , 0, n1 − uq1 , 0
and n1 = sp1 + tq1, n2 = sp2 + tq2 (r, s, t, u ∈ Z \ {0});

 (67)

We emphasize that (65)–(67) are three versions of the same equation (53) and these versions do not exhaust the latter
equation (4 other versions exist but we do not use them).

Now, we are going to transform equations (65)–(67) by simplifying the involved conditions. Recall that (p2, q2) are
positive integers. Let d > 0 be their greatest common divisor. Then (p2, q2) = (dp′2, dq′2), where (p′2, q

′
2) is the pair of
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relatively prime positive integers. Now p1q2 − p2q1 = d(p1q′2 − p′2q1). Let us introduce the integer δ = p1q′2 − p′2q1, it
will participate in many further formulas.

We start with the equation (65). Observe that n1 and n2 do not participate in the equation itself but are involved to
conditions written in the second line of (65). For arbitrary s, t ∈ Z \ {0}, we can define n1 and n2 by the equalities

n1 = sp1 + tq1, n2 = sp2 + tq2.

It remains to ensure compliance with the condition: n2 is not divisible by either p2 or by q2. Writing the second equality
in the form n2 = dsp′2 + dtq′2, we see that the condition is equivalent to the following one:

s , 0 is not divisible by q′2 and t , 0 is not divisible by p′2.

Thus, the equation (65) takes the form

βsγt = 0 if s , 0 is not divisible by q′2 and t , 0 is not divisible by p′2

or, after changing notations,

βn1γn2 = 0 if n1 , 0 is not divisible by q′2 and n2 , 0 is not divisible by p′2. (68)

Next, we transform the equation (66) that takes the form

p′2(dq′2n1 − q1n2)αn1−rp1βr − q′2(dp′2n1 − p1n2)αn1−uq1γu = 0
if n2 = rp2 = uq2, n1 − rp1 , 0, n1 − uq1 , 0, (r, u ∈ Z \ {0}) and the
representation n1 = sp1 + tq1, n2 = sp2 + tq2 (s, t ∈ Z \ {0}) is impossible.

 (69)

Since p′2 and q′2 are relatively prime integers, the equalities n2 = rdp′2 = udq′2 imply the existence of the integer k such
that

n2 = dp′2q′2k, r = q′2k, u = p′2k, (70)

and the equation (69) takes the form

(n1 − p′2q1k)αn1−p1q′2kβq′2k − (n1 − p1q′2k)αn1−p′2q1kγp′2k = 0. (71)

The integer n = n1 − p1q′2k is as arbitrary as n1. Expressing n1 − p′2q1k = n + δk and substituting these expressions into
(71), we write the result in the form

αn

n

βq′2k

k
−
αn+δk

n + δk

γp′2k

k
= 0 (n , 0, k , 0, n + δk , 0).

We also have to discuss conditions written in last two lines of (69). Taking the equality n2 = dp′2q′2k into account, the
system n1 = sp1 + tq1, n2 = sp2 + tq2 can be written as follows:

p1s + q1t = n1, p′2s + q′2t = p′2q′2k.

From this

s =
q′2(n1 − p′2q1k)

δ
, t =

p′2(−n1 + p1q′2k)
δ

.

Using the equalities n1 − p′2q1k = n + δk, n1 − p1q′2k = n, we write the latter formula in the form

s =
q′2n
δ

+ q′2k, t = −
p′2n
δ
.

By conditions written in last two lines of (69), at least one of reals s, t is not an integer. Hence these conditions are
equivalent to the following one:

(p′2n is not divisible by δ) or (q′2n is not divisible by δ). (72)

Let us demonstrate that this is equivalent to the condition: n is not divisible by δ. Indeed, the negation of (72) means that

p′2n = δa, q′2n = δb
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with some integers a and b. Taking a linear combination of these equalities, we have

(lp′2 + mq′2)n = δ(la + mb).

Since p′2 and q′2 are relatively prime integers, there exist integers l and m such that lp′2 + mq′2 = 1. Now, the last formula
gives n = δ(la + mb), i.e., n is divisible by δ.

Thus, the complete form of the equation (69) looks as follows:

αn

n

βq′2k

k
−
αn+δk

n + δk

γp′2k

k
= 0 if n , 0, k , 0 and n is not divisible by δ.

Changing notation of indices, we write this in the final form

αn1

n1

βq′2n2

n2
−

αn1+δn2

n1 + δn2

γp′2n2

n2
= 0 if n1 , 0, n2 , 0 and n1 is not divisible by δ. (73)

Finally, we transform the equation (67) that takes the form

p′2(dq′2n1 − q1n2)αn1−rp1βr − q′2(dp′2n1 − p1n2)αn1−uq1γu − n2δ βsγt = 0
if n2 = rdp′2 = udq′2, n1 − rp1 , 0, n1 − uq1 , 0,
n1 = sp1 + tq1, n2 = d(sp′2 + tq′2) (r, s, t, u ∈ Z \ {0});

 (74)

Since p′2 and q′2 are relatively prime integers, the equalities n2 = rdp′2 = udq′2 imply the validity of (70) with some integer
k. Now, the system n1 = sp1 + tq1, n2 = d(sp′2 + tq′2) takes the form

p1s + q1t = n1, p′2s + q′2t = p′2q′2k. (75)

By the condition, this system has the integer solution (s, t). Hence s is divisible by q′2 and t is divisible by p′2: s = q′2s′, t =

p′2t′. The system takes the form
p1q′2s′ + p′2q1t′ = n1, s′ + t′ = k.

From this

s′ =
n1 − p′2q1k

δ
, t′ =

−n1 + p1q′2k
δ

.

Hence the integers n1 − p′2q1k and n1 − p1q′2k are divisible by δ, i.e.,

n1 = δs′ + p′2q1k = −δt′ + p1q′2k. (76)

Equations (70) and (76) imply
n1 − rp1 = −δt′, n1 − uq1 = δs′. (77)

Substituting these values and n2 = dp′2q′2k into (74), we obtain

(n1 − p′2q1k)α−δt′βq′2k − (n1 − p1q′2k)αδs′γp′2k − δk βsγt = 0.

In virtue of (70) formulas (77) can be written as n1 − p′2q1k = δs′, n1 − p1q′2k = −δt′. This allows us to simplify the latter
equation to the following one:

s′ α−δt′βq′2k + t′ αδs′γp′2k − k βsγt = 0.

Finally, inserting the values s = q′2s′, t = p′2t′, k = s′ + t′, we obtain

s′ α−δt′βq′2(s′+t′) + t′ αδs′γp′2(s′+t′) − (s′ + t′) βq′2 s′γp′2t′ = 0.

Changing indices according to the equalities n1 = −t′, n2 = s′ + t′, we arrive to the equation

(n1 + n2)αδn1βq′2n2 − n1αδ(n1+n2)γp′2n2 − n2βq′2(n1+n2)γ−p′2n1 = 0 (n1 , 0, n2 , 0, n1 + n2 , 0)

that can be written in the final form

αδn1

n1

βq′2n2

n2
−
αδ(n1+n2)

n1 + n2

γp′2n2

n2
−
βq′2(n1+n2)

n1 + n2

γ−p′2n1

n1
= 0 (n1 , 0, n2 , 0, n1 + n2 , 0), (78)
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We can now finish the proof of Theorem 2. Introducing the variables

xn =
αδn
n
, yn =

βq′2n

n
, zn =

γp′2n

n
(n , 0), (79)

we write the equation (78) in the form

xn1 yn2 − xn1+n2 zn2 + yn1+n2 z−n1 = 0 (n1 , 0, n2 , 0, n1 + n2 , 0)

that coincides with (13). Hypotheses (14) and (15) of Theorem 5 are satisfied by (35) and (36). Applying Theorem 5, we
can state that one of the following three cases takes place: (1) yn = zn = 0 for all n , 0, (2) xn = zn = 0 for all n , 0, (3)
xn = yn = 0 for all n , 0.

Recall that we are proving Theorem 2 by contradiction. At the beginning of the current section, we assumed that each of
lines (27) contained at least one point belonging to the spectrum of the function λ and other than the origin. This means
that each of the sequences {αn}n∈Z\{0}, {βn}n∈Z\{0}, {γn}n∈Z\{0} contains at least one nonzero term. We will get a contradiction
in each of the cases presented by Theorem 5.

(1) yn = zn = 0 for all n , 0. By (79), this means that

βq′2n = γp′2n = 0 (n , 0). (80)

We choose m, l ∈ Z \ {0} such that βm , 0 and γl , 0. By (80), m is not divisible by q′2 and l is not divisible by p′2. Then
βmγl , 0. But by the equation (68), βmγl = 0. We have got a contradiction.

(2) xn = zn = 0 for all n , 0. By (79), this means that

αδn = γp′2n = 0 (n , 0). (81)

The equation (73) is simplified to the following one:

αn1βq′2n2 = 0 if n1 , 0, n2 , 0 and n1 is not divisible by δ.

If we assumed that βq′2n2 , 0 at least for one n2 , 0, then the last formula would imply that

αn = 0 for all n , 0, that are not divisible by δ.

Together with (81), this gives the contradiction: αn = 0 for all n , 0. Thus, only one possibility remains: βq′2n = 0 for all
n , 0. Together with (81), this gives yn = zn = 0 (n , 0) and we return to the case (1) considered above.

The third case xn = yn = 0 (n , 0) is considered in the same way.

4. Proof of Theorem 5

We investigate the system (13) together with the parity condition (14). The latter condition will be multiply used as a
“default condition”, i.e., with no reference.

We first list some obvious but important properties of the system (13). First of all the system possesses the following
homogeneity: if (xn, yn, zn) is a solution to the system, then (axn, ayn, azn) is also a solution for any real a. Second, the
system is invariant under the changes

(n1, n2)→ (−n1,−n2);
(xn, yn, zn)→ (yn, xn,−z−n), (n1, n2)→ (n2, n1);
(xn, yn, zn)→ (zn, yn, xn), (n1, n2)→ (−n1, n1 + n2);
(xn, yn, zn)→ (−x−n, zn, yn), (n1, n2)→ (−n1 − n2, n2).

(82)

Obviously, the system has one-dimensional solutions: if yn = zn = 0 for all n , 0, then xn can be arbitrary; the same is
true in two other cases: xn = zn = 0 and xn = yn = 0. We are going to prove that the system has no other solution. To this
end the decay condition (15) will be used at a couple of crucial points.

Let us first prove that the system has no two-dimensional solution; more precisely: every two-dimensional solution is
actually a one-dimensional one. Indeed, let zn = 0 for all n , 0. The equation (13) is simplified to the following one:

xn1 yn2 = 0 (n1 , 0, n2 , 0, n1 + n2 , 0).
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If we assumed that xn0
1
, 0 for some n0

1 , 0, then the last formula would imply that yn2 = 0 for all n2 , 0, n2 , −n0
1. In

particular, yn0
1

= 0 and hence y−n0
1

= yn0
1

= 0. Thus, yn = zn = 0 for all n , 0, i.e., our solution is one-dimensional. Two
other cases yn = 0 and xn = 0 are considered in the same way.

The left-hand side of the equation (13) is a quadratic form in the variables (x, y, z) but it is linear in each of the variables.
Such forms are called trilinear forms.

For every n ≥ 2, the system (13) contains three finite subsystems:

zn−mxn − z−myn = xmyn−m (1 ≤ m ≤ n − 1), (83)

x−myn − xn−mzn = −yn−mzm (1 ≤ m ≤ n − 1), (84)

y−mxn + yn−mz−n = xn−mz−m (1 ≤ m ≤ n − 1). (85)

If xk, yk, zk are assumed to be known for |k| < n, then (83) can be considered as a system of linear equations with two
unknowns (xn, yn). The system is overdetermined for n ≥ 3 and the degree of overdetermination grows with n. The same
is true for systems (84) and (85).

We now derive an interesting corollary of equations (83)–(85). To this end we write down equations (83) and (85) together,
performing the change m := n − m in the latter equation

zn−mxn − z−myn = xmyn−m,
y−n+mxn + ymz−n = xmz−n+m.

∣∣∣∣∣∣ z−n+m

−yn−m

We eliminate xm from this system by multiplying the first equation by z−n+m, multiplying the second equation by −yn−m

(as is designated after the vertical bar) and summing the results. In this way we obtain

(|zn−m|
2 − |yn−m|

2)xn = z−n+mz−myn + ymyn−mz−n.

Let us replace m with n − m here
(|zm|

2 − |ym|
2)xn = z−n+mz−myn + ymyn−mz−n.

Right-hand sides of two last equations coincide. Equating left-hand sides, we get

(|zm|
2 − |ym|

2)xn = (|zn−m|
2 − |yn−m|

2)xn (1 ≤ m ≤ n − 1).

The same trick can be done with pairs (83)–(84) and (84)–(85). We thus obtain

(|zm|
2 − |ym|

2)xn = (|zn−m|
2 − |yn−m|

2)xn,

(|xm|
2 − |zm|

2)yn = (|xn−m|
2 − |zn−m|

2)yn,

(|xm|
2 − |ym|

2)zn = (|xn−m|
2 − |yn−m|

2)zn.

 (1 ≤ m ≤ n − 1). (86)

In this section, we will show that Theorem 5 follows from its partial case.

Lemma 7. Theorem 5 is valid under the additional condition

|x1| + |y1| + |z1| > 0.

We start the proof of Theorem 5. Let a sequence (xn, yn, zn)n∈Z\{0} satisfy hypotheses of the theorem. We can assume
that the sequence is not identically equal to zero (otherwise there is nothing to prove). Let p be the minimal of positive
integers n such that |xn| + |yn| + |zn| > 0. If p = 1, we are under hypotheses of Lemma 7 that is assumed to be valid.
Therefore we can assume that p ≥ 2. The sequence (x̃n, ỹn, z̃n) = (xpn, ypn, zpn) also satisfy hypotheses of Theorem 5
and |x̃1| + |ỹ1| + |z̃1| > 0. By Lemma 7, the assertion of Theorem 5 is true for (x̃n, ỹn, z̃n), i.e., one of the following three
statements is valid: (1) ỹn = z̃n = 0 (n , 0), (2) x̃n = z̃n = 0 (n , 0), (3) x̃n = ỹn = 0 (n , 0). In view of symmetries (82),
we can assume without lost of generality that the first statement is valid. Thus,

ypn = zpn = 0 (n ∈ Z \ {0}). (87)

Besides this,
xn = yn = zn = 0 (0 < |n| < p). (88)
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By (87), yp = zp = 0. Hence xp , 0 by the definition of p. Using the homogeneity mentioned at the beginning of the
section, we can assume without lost of generality that

|xp| = 1. (89)

Setting n1 = n, n2 = p − n in (13), we have

xnyp−n − xpzp−n + ypz−n = 0 (n , 0, p − n , 0).

The third summand on the left-hand side is equal to zero by (87) and the equation is simplified to the following one:

xnyp−n − xpzp−n = 0 (n , 0, p − n , 0).

If 1− p ≤ n ≤ −1, then the first summand on the left-hand side is equal to zero by (88) and we obtain xpzp−n = 0 (1− p ≤
n ≤ −1). Since xp , 0, we get zp−n = 0 (1 − p ≤ n ≤ −1) that can be written as follows: zn = 0 (p + 1 ≤ n ≤ 2p − 1).
Together with (87)–(88), this gives

zn = 0 (0 < |n| ≤ 2p). (90)

Next, we set n1 = p, n2 = n in (13)

xpyn − xn+pzn + yn+pz−p = 0 (n , 0, n + p , 0).

The third summand on the left-hand side is equal to zero by (87) and the equation is simplified to the following one:

xpyn − xn+pzn = 0 (n , 0, n + p , 0).

If 0 < |n| ≤ 2p, then the second summand on the left-hand side is equal to zero by (90) and we obtain xpyn = 0 (0 < |n| ≤
2p). Since xp , 0, we conclude yn = 0 (0 < |n| ≤ 2p). Together with (90), this gives

yn = zn = 0 (0 < |n| ≤ 2p). (91)

Some difficulty appears in our further arguments. Let us try to take one more step. Setting n1 = n, n2 = 2p − n in (13),
we have

xny2p−n − x2pz2p−n + y2pz−n = 0 (n , 0, 2p − n , 0).

The third summand on the left-hand side is equal to zero by (87) and the equation is simplified to the following one:

xny2p−n − x2pz2p−n = 0 (n , 0, 2p − n , 0).

If 1 − p ≤ n ≤ −1, then xn = 0 by (88) and we obtain

x2pz2p−n = 0 (1 − p ≤ n ≤ −1).

This can be written as follows:
x2pzn = 0 (2p + 1 ≤ n ≤ 3p − 1).

By (87), z3p = 0. Therefore the previous formula is strengthened to the following one:

x2pzn = 0 (2p + 1 ≤ n ≤ 3p). (92)

Next, we set n1 = 2p, n2 = n in (13)

x2pyn − x2p+nzn + y2p+nz−2p = 0 (n , 0, 2p + n , 0).

The third summand on the left-hand side is equal to zero by (87) and the equation is simplified to the following one:

x2pyn − x2p+nzn = 0 (n , 0, 2p + n , 0).

If 1 − p ≤ 2p + n ≤ −1, then x2p+n = 0 by (88) and we obtain

x2pyn = 0 (−3p + 1 ≤ n ≤ −2p − 1).
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Changing the sign of n and using y−n = yn, we write this in the form

x2pyn = 0 (2p + 1 ≤ n ≤ 3p − 1).

By (87), y3p = 0. Therefore the previous formula is strengthened to the following one:

x2pyn = 0 (2p + 1 ≤ n ≤ 3p). (93)

Comparing (92) and (93), we arrive to the alternative

either x2p = 0 or (yn = zn = 0 for 0 < |n| ≤ 3p). (94)

Because of the alternative, we have to consider two possible cases:

Case 1. xkp , 0 for all k > 0;

Case 2. There exists k ≥ 2 such that xkp = 0.

We will first finish the proof in the first case. Thus, we assume that

xkp , 0 (k > 0). (95)

By induction on k, we prove that
yn = zn = 0 for 0 < |n| ≤ (k + 1)p. (96)

After (96) had been proven for all k, we would have yn = zn = 0 for all n , 0, i.e., our solution is a one-dimensional one.
This proves Theorem 5 in the first case.

We observe that (96) holds for k = 1 and for k = 2 as is seen from (91) and (94)–(95). Assume the validity of (96) for
some k ≥ 2.

Setting n1 = n, n2 = (k + 1)p − n in (13), we have

xny(k+1)p−n − x(k+1)pz(k+1)p−n + y(k+1)pz−n = 0
(
n , 0, (k + 1)p − n , 0

)
.

The third summand on the left-hand side is equal to zero by (87) and the equation is simplified to the following one:

xny(k+1)p−n − x(k+1)pz(k+1)p−n = 0 (n , 0, (k + 1)p − n , 0).

If 1 − p ≤ n ≤ −1, then xn = 0 by (88) and we obtain

x(k+1)pz(k+1)p−n = 0 (1 − p ≤ n ≤ −1).

This can be written as:
x(k+1)pzn = 0

(
(k + 1)p + 1 ≤ n ≤ (k + 2)p − 1

)
.

Since x(k+1)p , 0 by the assumption (95), we get

zn = 0
(
(k + 1)p + 1 ≤ n ≤ (k + 2)p − 1

)
. (97)

Next, we set n1 = (k + 1)p, n2 = n in (13)

x(k+1)pyn − x(k+1)p+nzn + y(k+1)p+nz−(k+1)p = 0
(
n , 0, (k + 1)p + n , 0

)
.

The third summand on the left-hand side is equal to zero by (87) and the equation is simplified to the following one:

x(k+1)pyn − x(k+1)p+nzn = 0
(
n , 0, (k + 1)p + n , 0

)
.

If 1 − p ≤ (k + 1)p + n ≤ −1, then x(k+1)p+n = 0 by (88) and we obtain

x(k+1)pyn = 0
(
− (k + 2)p + 1 ≤ n ≤ −(k + 1)p − 1

)
.

Since x(k+1)p , 0 by the assumption (95), we get

yn = 0
(
− (k + 2)p + 1 ≤ n ≤ −(k + 1)p − 1

)
.
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Changing the sign of n and using y−n = yn, we write the result in the final form

yn = 0
(
(k + 1)p + 1 ≤ n ≤ ((k + 2)p − 1

)
. (98)

Uniting (97) and (98), we have
yn = zn = 0

(
(k + 1)p + 1 ≤ n ≤ ((k + 2)p − 1

)
.

By (87), y(k+2)p = z(k+2)p = 0. Therefore the previous formula is strengthened to the following one:

yn = zn = 0
(
(k + 1)p + 1 ≤ n ≤ ((k + 2)p

)
.

Using the parity condition (14), it can be written in the more strength form:

yn = zn = 0
(
(k + 1)p + 1 ≤ |n| ≤ ((k + 2)p

)
.

Together with the induction assumption (96), this gives

yn = zn = 0 for 0 < |n| ≤ (k + 2)p.

This finishes the induction step.

We proceed to considering the second case that is characterized by the existence of k ≥ 2 such that xkp = 0. Let k0 be the
minimal of such k. Thus,

xkp , 0 (1 ≤ k ≤ k0 − 1); xk0 p = 0.

We can reproduce first k0 − 1 steps of the above-presented induction proof in order to prove that

yn = zn = 0 for 0 < |n| ≤ k0 p. (99)

We prove Theorem 5 by contradiction. Recall that the system (13)–(14) has no two-dimensional solution. Let us assume,
contrary to the assertion of Theorem 5, that the solution (xn, yn, zn) is three-dimensional one, i.e., each of the sequences
{yn}n∈Z\{0} and {zn}n∈Z\{0} has at least one nonzero term. Let q be the minimal of positive integers n such that yn , 0.
Similarly, let r be the minimal of positive integers n such that zn , 0. In view of symmetries (82), we can assume without
lost of generality that q ≤ r. Thus,

yn = 0 for 0 < |n| < q, yq , 0;

zn = 0 for 0 < |n| < r, zr , 0. (100)

The sequence (x̃n, ỹn, z̃n) = (xqn, yqn, zqn) satisfies hypotheses of Lemma 7 since ỹ1 , 0. By the lemma, (x̃n, ỹn, z̃n) is a
one-dimensional solution, i.e., x̃n = z̃n = 0 (n , 0). Thus,

xqn = zqn = 0 (n ∈ Z \ {0}).

In particular, zq = 0. Taking the inequality q ≤ r into account and using (100), we can now state that

zn = 0 for 0 < |n| ≤ q. (101)

Setting n1 = n, n2 = q in (13), we have

xnyq − xn+qzq + yn+qz−n = 0 (n , 0, n + q , 0).

The second summand on the left-hand side is equal to zero by (101) and the equation is simplified to the following one:

xnyq + yn+qz−n = 0 (n , 0, n + q , 0).

For 0 < n ≤ q, the second summand on the left-hand side is equal to zero by (101) and we obtain

xnyq = 0 (0 < n ≤ q).

Since yq , 0, we get
xn = 0 (0 < n ≤ q). (102)

Recall that p ≤ q. Therefore (102) means in particular that xp = 0. This contradicts to the equality (89). The contradiction
finishes the proof of Theorem 5 under the assumption that Lemma 7 is true.
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5. Proof of Lemma 7

By the hypothesis |x1|+ |y1|+ |z1| > 0, at least one of the numbers x1, y1, z1 is not equal to zero. In view of symmetries (82)
we can assume without lost of generality that x1 , 0. Using the homogeneity mentioned at the beginning of the previous
section, we can assume that

|x1| = 1. (103)

Let us prove the alternative
y1 = z1 = 0 or (y1 , 0 and z1 , 0). (104)

Indeed, assume that z1 = 0. Setting n1 = n2 = 1 in (13), we have

x1y1 − x2z1 + y2z−1 = 0.

The second and third summands on the left-hand side are equal to zero and we obtain x1y1 = 0. Since x1 , 0, this implies
that y1 = 0. On the other hand, assume that y1 = 0. Setting n1 = 2, n2 = −1 in (13), we have

x2y−1 − x1z−1 + y1z−2 = 0.

The first and third summands on the left-hand side are equal to zero and we obtain x1z−1 = 0. Since x1 , 0, this implies
z−1 = 0. Hence z1 = z−1 = 0.

Lemma 7 is proved in different ways in the two cases presented by the alternative (104). We first consider the case when

y1 = z1 = 0. (105)

Set n1 = n, n2 = 1 in (13)
xny1 − xn+1z1 + yn+1z−n = 0 (n , 0, n , −1).

First two summands on the left-hand side are equal to zero by (105). Hence yn+1z−n = 0 that is equivalent to

yn+1zn = 0 (n , 0, n , −1). (106)

Next, set n1 = n, n2 = 1 − n in (13)

xny1−n − x1z1−n + y1z−n = 0 (n , 0, n , 1).

The last summand on the left-hand side is equal to zero by (106). Hence

xny1−n − x1z1−n = 0 (n , 0, n , 1).

We express z1−n from the last formula

z1−n =
1
x1

xny1−n (n , 0, n , 1).

This can be written in the form
zn =

1
x1

x1−nyn (n , 0, n , 1). (107)

Finally, set n1 = 1, n2 = n in (13)

x1yn − xn+1zn + yn+1z−1 = 0 (n , 0, n , −1).

The last summand on the left-hand side is equal to zero by (105). Hence

x1yn − xn+1zn = 0 (n , 0, n , −1).

Express yn from the last formula

yn =
1
x1

xn+1zn (n , 0, n , −1). (108)

If yn = zn = 0 for all n ≥ 1, then our solution is one-dimensional. Therefore we assume the existence of n0 ≥ 2 such that

yn = zn = 0 for 0 < |n| < n0 (109)
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and |yn0 | + |zn0 | > 0. Then
yn0 , 0, zn0 , 0. (110)

Indeed, if for instance the equality yn0 = 0 was true, then setting n = n0 in (107) we would obtain zn0 = 0. If zn0 = 0, then
we use (108) in the same way.

Setting n = n0 and then setting n = −n0 − 1 in (106), we have

yn0+1zn0 = 0, y−n0 z−n0−1 = 0.

This is equivalent to the equalities
yn0+1zn0 = 0, yn0 zn0+1 = 0

which give with the help of (110)
yn0+1 = zn0+1 = 0.

Let us write down the equation (84) for n = n0

x−myn0 − xn0−mzn0 = −yn0−mzm (1 ≤ m ≤ n0 − 1).

The right-hand side is equal to zero by (109) and we obtain

x−myn0 − xn0−mzn0 = 0 (1 ≤ m ≤ n0 − 1). (111)

In particular, for m = 1 this gives

yn0 =
xn0−1

x−1
zn0 , (112)

and for m = n0 − 1 (111) gives

zn0 =
x−n0+1

x1
yn0 .

As follows from two last formulas,
(|xn0−1|

2 − |x1|
2)yn0 = 0.

Since yn0 , 0, we obtain
|xn0−1| = |x1| = 1. (113)

Formulas (112) and (113) imply the important conclusion:

|yn0 | = |zn0 |. (114)

Now, we prove by induction on k the following statement: for every integer k ≥ 0,

|xln0+1| = 1, yln0+1 = zln0+1 = 0 (0 ≤ l ≤ k) (115)

and
|yln0 | = |zln0 | , 0 (0 < l ≤ k + 1). (116)

If (115) was proved for all k, this would contradict to the decay condition xn → 0.

For k = 0, equalities (115)–(116) hold as is seen from (103), (105), (110) and (114).

For the induction step, we write down equations (83)–(85) for n = (k + 1)n0 + 1

z(k+1)n0−m+1x(k+1)n0+1 − z−my(k+1)n0+1 = xmy(k+1)n0−m+1 (1 ≤ m ≤ (k + 1)n0), (117)

x−my(k+1)n0+1 − x(k+1)n0−m+1z(k+1)n0+1 = −y(k+1)n0−m+1zm (1 ≤ m ≤ (k + 1)n0), (118)

y−mx(k+1)n0+1 + y(k+1)n0−m+1z−(k+1)n0−1 = x(k+1)n0−m+1z−m (1 ≤ m ≤ (k + 1)n0). (119)

For m = kn0 + 1, the equation (119) looks as follows:

y−kn0−1x(k+1)n0+1 + yn0 z−(k+1)n0−1 = xn0 z−(k+1)n0−1.
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By the induction hypothesis (115), y−kn0−1 = z−kn0−1 = 0. The first summand on the left-hand side of the last equation
is equal to zero as well as the right-hand side. The equation is simplified to the following one: yn0 z−(k+1)n0−1 = 0 that is
equivalent to yn0 z(k+1)n0+1 = 0. Observe that yn0 , 0 as is seen from the induction hypothesis (116). Hence

z(k+1)n0+1 = 0. (120)

Let us write down the equation (84) for n = 2n0 and m = n0

x−n0 y2n0 − xn0 z2n0 = −yn0 zn0 .

By the induction hypothesis (116), the right-hand side of this equation is not equal to zero. Therefore

xn0 , 0. (121)

For m = n0, the equation (118) looks as follows:

x−n0 y(k+1)n0+1 − xkn0+1z(k+1)n0+1 = −ykn0+1zn0 .

By the induction hypothesis (115), ykn0+1 = 0. The right-hand side of the last equation is equal to zero. The equation is
simplified to the following one:

x−n0 y(k+1)n0+1 − xkn0+1z(k+1)n0+1 = 0.

With the help of (120), this is transformed to the form x−n0 y(k+1)n0+1 = 0. Since x−n0 , 0 by (121), we conclude

y(k+1)n0+1 = 0. (122)

For m = 1, the equation (117) looks as follows:

z(k+1)n0 x(k+1)n0+1 − z−1y(k+1)n0+1 = x1y(k+1)n0 .

By the induction hypothesis (115), z−1 = 0. The second summand on the left-hand side of the last equation is equal to
zero. The equation is simplified to the following one:

z(k+1)n0 x(k+1)n0+1 = x1y(k+1)n0 .

By the induction hypotheses (115)–(116), |x1| = 1, |y(k+1)n0 | = |z(k+1)n0 | , 0. Therefore the last equation implies

|x(k+1)n0+1| = |x1|
|y(k+1)n0 |

|z(k+1)n0 |
= 1. (123)

Together with (120) and (122), this proves (115) for k := k + 1.

It remains to prove (116) for k := k+1. To this end we write down the equation (84) for n = (k+2)n0 and m = (k+1)n0 +1

x−(k+1)n0−1y(k+2)n0 − xn0−1z(k+2)n0 = −yn0−1z(k+1)n0+1.

By (109), yn0−1 = 0. Therefore the last equation is simplified to the following one:

x−(k+1)n0−1y(k+2)n0 − xn0−1z(k+2)n0 = 0.

From this
|x(k+1)n0+1||y(k+2)n0 | = |xn0−1||z(k+2)n0 |.

By (113), |xn0−1| = 1. By (123), |x(k+1)n0+1| = 1. Therefore the last formula gives

|y(k+2)n0 | = |z(k+2)n0 |. (124)

Now, we write the equation (84) for n = (k + 2)n0 and m = n0

x−n0 y(k+2)n0 − x(k+1)n0 z(k+2)n0 = −y(k+1)n0 zn0 .
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By the induction hypothesis (116), the right-hand side of this equality is not equal to zero. Therefore the statement (124)
can be strengthened to the following one:

|y(k+2)n0 | = |z(k+2)n0 | , 0.

This means the validity of (116) for k := k + 1. The induction step is done. As has been mentioned before, this proves
Lemma 7 in the case (105).

Now, we consider the second case of the alternative (104) when the equality (103) holds and

y1 , 0, z1 , 0.

Equations (83)–(85) imply the following statement.

(∗) The following is true for every integer n ≥ 1. If two of three numbers (xn, yn, zn) are nonzero, then the third one is also
nonzero.

Indeed, let us write the equation (83) for n := 2n and m = n

znx2n − z−ny2n = xnyn,

Assume that xnyn , 0. Then zn , 0 as is seen from the last formula. Two other possible cases are considered in the same
way on using (84)–(85).

Let us prove that
xnynzn , 0 for all n > 0. (125)

We prove by contradiction. Assume the statement to be wrong and let n0 ≥ 2 be the minimal positive integer such that
xn0 yn0 zn0 = 0. Then

xnynzn , 0 (1 ≤ n ≤ n0 − 1) (126)

and, according to the statement (∗), at least two of three numbers (xn0 , yn0 , zn0 ) are equal to zero. We write the equation
(83) for n = n0 and m = 1

zn0−1xn0 − z−1yn0 = x1yn0−1.

If xn0 = yn0 = 0, then the left-hand side is equal to zero. But the right-hand side is not equal to zero by (126). We have
got a contradiction. Two other possible cases are considered in the same way on using (84)–(85). Thus, (125) is proved.
Now, we conclude with the help of (86) that the differences

|xn|
2 − |yn|

2, |xn|
2 − |zn|

2 (127)

are independent of n.

By the decay condition |xn|+ |yn|+ |zn| → 0, each of sequences (127) converges to zero as n→ ∞. And since the differences
are independent of n, we conclude

|xn| = |yn| = |zn| > 0 (n = 1, 2, . . . ). (128)

According to (128), we represent the complex numbers xn, yn, zn in the trigonometric form

xn = rneiαn , yn = rneiβn , zn = rneiγn , (129)

where {rn}
∞
n=1 is a sequence of positive numbers converging to zero as n→ ∞. Choose n0 ≥ 3 such that

rn < 1 for n ≥ n0. (130)

Let n ≥ 3. We write two versions of the equation (83) corresponding to m = 1 and m = n − 1

zn−1xn − z−1yn = x1yn−1,

z1xn − z−n+1yn = y1xn−1.

It is the system of linear equations for the unknowns (xn, yn). The determinant of the system is equal to |z1|
2 − |zn−1|

2 =

1 − r2
n−1. By (130), the determinant is positive for n > n0. Solving the system, we obtain

xn =
y1z−1xn−1 − x1yn−1z−n+1

1 − r2
n−1

(n > n0).
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Let us increase the value of n by one in order to simplify further formulas

xn+1 =
y1z−1xn − x1ynz−n

1 − r2
n

(n ≥ n0). (131)

Now, using (129) and (131), we compute

r2
n+1 = |xn+1|

2 =
1

(1 − r2
n)2

(
y1z−1xn − x1ynz−n)(y−1z1x−n − x−1y−nzn

)
=

1
(1 − r2

n)2

(
|y1|

2|z1|
2|xn|

2 − x−1y1z−1xny−nzn − x1y−1z1x−nynz−n + |x1|
2|yn|

2|zn|
2)

=
1

(1 − r2
n)2

(
r2

n − r3
n
(
ei(−α1+β1−γ1+αn−βn+γn) + ei(α1−β1+γ1−αn+βn−γn)) + r4

n

)
.

Thus,
rn+1 =

rn

1 − r2
n

(
1 − 2rn cos(αn − βn + γn − α1 + β1 − γ1) + r2

n
)1/2 (n ≥ n0).

Let us rewrite the last formula as follows:

rk

rk−1
=

(
1 − 2rk−1 cos(αk−1 − βk−1 + γk−1 − α1 + β1 − γ1) + r2

k−1
)1/2

1 − r2
k−1

(k > n0).

This implies the inequality
rk

rk−1
≥

1
1 + rk−1

(k > n0). (132)

Let n > n0. Taking the product of inequalities (132) for k = n0 + 1, n0 + 2, . . . , n, we obtain

rn ≥
rn0

n∏
k=n0+1

(1 + rk)
.

Hence
rn ≥

rn0

∞∏
k=1

(1 + rk)
. (133)

By the decay condition (15),
∑∞

n=1 rn < ∞. As well known, it is equivalent to the statement
∏∞

n=1(1 + rn) < ∞. Thus,
there is a finite positive number independent of n on the right-hand side of (133). This contradicts to the decay condition
rn → 0 as n→ ∞. This finishes the proof of Lemma 7.

6. Conclusion

We emphasize that the following question remains open:

Problem 8. Does there exist a Riemannian metric on the 2-torus which admits an irreducible Killing tensor field of rank
m ≥ 3?

There exists a global isothermal coordinate system on a two-dimensional torus T2 furnished with a Riemannian metric g.
More precisely, there exist a lattice Γ ⊂ C and positive Γ-periodic function λ ∈ C∞(C) such that (T2, g) = (C/Γ, λ|dz|2).

In the current paper, we have obtained the following partial results on Problem 8 in the case of m = 3.

(A) A Riemannian torus (C/Γ, λ|dz|2) admits a non-trivial rank 3 Killing tensor field if and only if the function λ satisfies
the pseudodifferential equation

<
( ∂
∂z

(
λ(c∆−1λzz + a)

))
(134)

with some complex constants a and c , 0.

(B) Let a = a1 + ia2, c = c1 + ic2 and Γ′ be the dual lattice of Γ. The equation (134) can be equivalently written in terms
of Fourier coefficients of the function λ as the system of quadratic equations∑

0,k∈Γ′

c1(−n1k2
1 +2n2k1k2+n1k2

2) + c2(−n2k2
1−2n1k1k2+n2k2

2)
|k|2

λ̂kλ̂n−k = (a1n1 + a2n2)λ̂n (135)
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that hold for all n ∈ Γ′.

The system (135) has a big family of so called one-dimensional solutions. A solution λ̂n(n ∈ Γ′) to the system (135) is a
one-dimensional solution if it is supported L ∩ Γ′, where L ⊂ R2 is a line through the origin. The geometric meaning of
one-dimensional solutions is obvious: they correspond to Riemannian tori (C/Γ, λ|dz|2) admitting a Killing vector field.
If f is a Killing vector field, then f ⊗ f ⊗ f is the reducible Killing tensor field of third rank.

We look for solutions to the system (135) which are not one-dimensional solutions. Besides this, we are interested in
solutions satisfying the parity requirement λ̂−n = λ̂n and the decay requirement: λ̂n rapidly decays as |n| → ∞. Finally,
we impose the positiveness requirement: the function λ =

∑
λ̂nei(n1 x+n2y) must be positive. The positiveness requirement

is the most difficult aspect of the problem.

(C) Let λ ∈ C3(C) be a real solution to the equation (134). Assume that λ + λ0 also solves the equation (134) with some
real constant λ0 , 0. Then λ solves also the equation

cλzzz + c̄λz̄z̄z̄ = 0. (136)

Due to the latter statement, we can forget the positiveness requirement: given a solution to the system (135) satisfying
parity and decay requirements, the positiveness requirement is satisfied by choosing sufficiently large λ̂0 > 0.

The linear equation (136) can be easily investigated. In particular,

(D) If a Γ-periodic function λ ∈ C3(R2) solves the equation (136), then its Fourier coefficients {λ̂k}k∈Γ′ are supported in
Γ′ ∩ (L0 ∪ L1 ∪ L2), where L0, L1, L2 are three straight lines passing through the origin and intersecting with each other
at equal angles.

Due to the latter statement, (135) becomes a sparse system in the setting of the statement (C). Namely, the two-dimensional
array {λ̂k}k∈Γ′ of unknowns is replaced with three sequences {xn}n∈Z, {yn}n∈Z, {zn}n∈Z and the system (135) takes the form

xn1 yn2 − xn1+n2 zn2 + yn1+n2 z−n1 = 0 (n1 , 0, n2 , 0, n1 + n2 , 0). (137)

Unlike (135), we are able to find all solutions to the system (137). The following statement is of some independent interest
as well.

(E) Let three sequences of complex numbers xn, yn, zn (n ∈ Z) constitute a solution to the system (137). Assume the
solution to satisfy the parity condition x−n = xn, y−n = yn, z−n = zn and the decay condition

∑
n(|xn| + |yn| + |zn|) < ∞.

Then it is a one-dimensional solution, i.e., one of the following three statements holds: (a) yn = zn = 0 for all n , 0, (b)
xn = zn = 0 for all n , 0, (c) xn = yn = 0 for all n , 0.

Statements (C–E) imply our main result:

(F) The following statement is true for an arbitrary lattice Γ ⊂ R2. Let λ ∈ C∞(R2) be a real Γ-periodic solution to the
equation (134). Assume that λ + λ0 is also a solution to the equation (134) with some real constant λ0 , 0. Then λ is a
one-dimensional solution.

Starting this work, the author hoped to find a Riemannian metric on the 2-torus admitting an irreducible Killing tensor
field of third rank, i.e., to solve Problem 8 for m = 3. But finally we obtained partial results listed above. Nevertheless,
we still hope to solve Problem 8 for m = 4. Our hope is based on the following arguments. The system (135) appears
due to the method of spherical harmonics for Killing tensor fields developed in (Sharafutdinov, 2016). The latter method
applies to Killing tensor fields of an arbitrary rank m. Therefore an analogous of the system (135) can be derived for
m = 4. Of course the latter system will be more complicated and, most probably, will involve three unknown functions.
The corresponding version of the system (137) will involve four sequences xn, yn, zn, un. Our proof of the statement (E)
presented in Section 5 shoes that this statement is very rigid with respect to the amount of unknowns, i.e., it is not true
for four sequences. In other words, some additional degree of freedom can appear in our approach in the case of m = 4.
Thus, we still hope to find a Riemannian metric on the 2-torus admitting an irreducible Killing tensor field of fourth rank.
This will be the subject of our forthcoming work.
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