The Damped Harmonic Oscillator at the Classical Limit of the Snyder-de Sitter Space
- Lat´evi M. Lawson
- Ibrahim Nonkan´e
- Komi Sodoga
Abstract
Valtancoli in his paper entitled (P. Valtancoli, Canonical transformations and minimal length, J. Math. Phys. 56, 122107 2015) has shown how the deformation of the canonical transformations can be made compatible with the deformed Poisson brackets. Based on this work and through an appropriate canonical transformation, we solve the problem of one dimensional (1D) damped harmonic oscillator at the classical limit of the Snyder-de Sitter (SdS) space. We show that the equations of the motion can be described by trigonometric functions with frequency and period depending on the deformed and the damped parameters. We eventually discuss the influences of these parameters on the motion of the system.- Full Text: PDF
- DOI:10.5539/jmr.v13n2p1
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
- h-index (December 2021): 22
- i10-index (December 2021): 78
- h5-index (December 2021): N/A
- h5-median (December 2021): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org