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Sciences, Université de Lomé, Lomé, Togo.
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Abstract

Valtancoli in his paper entitled (P. Valtancoli, Canonical transformations and minimal length, J. Math. Phys. 56, 122107
2015) has shown how the deformation of the canonical transformations can be made compatible with the deformed
Poisson brackets. Based on this work and through an appropriate canonical transformation, we solve the problem of one
dimensional (1D) damped harmonic oscillator at the classical limit of the Snyder-de Sitter (SdS) space. We show that
the equations of the motion can be described by trigonometric functions with frequency and period depending on the
deformed and the damped parameters. We eventually discuss the influences of these parameters on the motion of the
system.

Keywords: deformed Heisenberg algebra, damped harmonic oscillator, deformed poisson bracket, deformed canonical
transformation, non-commutative geometry, Snyder-de Sitter space

1. Introduction

The search of quantum gravity is one the active field of research that has attracted much attention in the last decades.
Among all the candidate theories (Amati, Ciafaloni, & Veneziano, 1989; Scardigli,1999; Rovelli, & Smolin, 1995) to
address this problem, the non-commutative geometry seems to be the promising approach to quantum gravity. In this
sense, more recently, Lawson has proposed a model of quantum non-commutative geometry (Lawson, 2020; Lawson
2021) that may describe the space-time at Planck scale. The interesting physical result obtained in this theory which
differs from similar theories ( Fring, Gouba,& Scholz, 2010; Lawson, Gouba, & Avossevou, 2017) is that, this non-
commutative space-time leads to minimal and maximal lengths of graviton for simultaneous measurement. The existence
of this maximal length which is the basic difference from the one of the minimal length scenario, brings a lot of new
features in the representation of this space and could be the approach candidate to the measurement of quantum gravity
with energies currently accessible in a laboratory.

However, more general models of non-commutative spaces exist and describe the structure of spacetime at short distance
and preserve the Lorentz invariance. The best known is the Snyder model (Snyder, 1947 ), which is the first attempt of
introducing a fundamental length scale and is invariant under the Lorentz group. This model is generalized to a spacetime
background of constant curvature namely the Snyder-de Sitter (SdS) model (Kowalski-Glikman,& Smolin, 2004). It
is an example of non-commutative spacetime admitting three fundamental parameters and is also called Triply Special
Relativity (TSR) and is invariant under the action of the de Sitter group ( Kowalski-Glikman,& Smolin, 2004). Some
applications of this work have been done in ( Mignemi, 2009) and the model of a free particle and of an oscillator have
been solved in this framework.

A characteristic of non-commutative spaces is that the corresponding classical phase space is not canonical i.e. the
Poisson brackets do not have the usual form. Thus, at the classical limit of the SdS space the solutions of free particle
and harmonic oscillator systems had been also obtained by substituting the generalized commutations with the deformed
Poisson brackets ( Mignemi, 2012). Hence, in this paper we are interesting in the study of a one dimensional (1D) damped
harmonic oscillator (Kanai, 1948; Caldirola, 1914), in the deformed Poisson brackets. Since this system is explicitly time-
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dependent, to determine its solutions of motion, we first make the Hamiltonian simpler by means of a suitable canonical
transformation. Then we solve the equations of motion for the new canonical variables in the deformed Poisson brackets.
We provide the solutions of the motion in terms of trigonometric functions where the frequency and the period of the
motion depend on the deformed and the damped parameters. We show that when the damped parameter is less than a
certain value of the deformed parameter, the gravity induces faster motion of system but when it is greater than this value
the dissipation slows down the motion of the system.

This paper is organized as follows. In section (2), we review some properties of quantum SdS model and classical limit of
SdS model in 1D. We extend in section (3), the classical procedure on the canonical transformation. Based on this study,
we explicitly solve in section (4) the 1D damped harmonic oscillator in the classical limit of SdS model. We provide the
solutions of the motion in terms of trigonometric functions where we discuss the influence of the deformed parameters
and the friction parameters on the motion of the system. We present our conclusion in section (5).

2. Classical Snyder-de Sitter Space

The non relativistic quantum SdS model i.e the Snyder model restricted to a three-dimensional sphere is generated by the
positions operators x̂µ, the momentum operators p̂ν and the Lorentz generators Ĵµν such as

[x̂µ, x̂ν] = iβ2 Ĵµν, [p̂µ, p̂ν] = iα2 Ĵµν, µ, ν = 0, ...3
[x̂µ, p̂ν] = i

(
ηµν + α2 x̂µ x̂ν + β2 p̂µ p̂ν + αβ(x̂µ p̂ν + p̂µ x̂ν − Ĵµν)

)
. (1)

where η = diag(−1, 1, 1, 1) is the flat metric and the coupling constants β, α (αβ � 1) have dimension of inverse length and
inverse mass, respectively. They are usually identified with the square root of the cosmological constant α = 10−24cm−1

and with the inverse of the Planck mass, β = 105g−1 (Mignemi, 2009) . The Lorentz generator with their standard action
on the position and momentum operators x̂µ nd p̂ν satisfy the usual commutation relations such as

[Ĵµν, p̂µ] = i(ηνλ p̂µ − ηνλ p̂ν), [Ĵµν, p̂µ] = i(ηνλ x̂µ − ηµλ x̂ν),
[Ĵµν, Ĵρσ] = i(ηνρ Ĵνσ − ησµ Ĵρν − ησν Ĵρµ), ~ = 1. (2)

The limit α→ 0 the SdS space (1) gives the flats Snyder space (Snyder, 1947)

[x̂µ, x̂ν] = iβ2 Ĵµν, [ p̂µ, p̂ν] = 0, [x̂µ, p̂ν] = i
(
ηµν + β2 p̂µ p̂ν

)
, (3)

while the limit β → 0 yields the Heisenberg algebra of quantum mechanics in a de Sitter background endowed with
projective coordinates (Mignemi, 2012).

In one-dimensional case, the algebra (1) is reduced into

[x̂, p̂] = i
(
1 + α2 x̂2 + β2 p̂2 + αβ(x̂ p̂ + p̂x̂)

)
, [x̂, x̂] = 0 = [ p̂, p̂]. (4)

and for the simple case 〈x̂〉 = 0 = 〈p̂〉, the uncertainty relation is given by

∆x∆p ≥
1
2
α2∆x + β2∆p

1 + βα
. (5)

If α, β > 0, they imply the existence of both minimal position and momentum uncertainties, given by

∆x =
β√

1 + 2αβ
= β(1 − αβ), ∆p =

α√
1 + 2αβ

= α(1 − αβ). (6)

For α, β < 0, no minimal uncertainties emerge (Mignemi, 2012).

In one dimensional classical limit, the commutator (4) is replaced by the deformed Poisson bracket

{x, p} = 1 + (αx + βp)2 , {x, x} = 0 = {p, p} (7)

The equations of motion governed by the classical Hamiltonian H(x, p) are given by

ẋ = {x,H} =
∂H
∂p
{x, p} =

∂H
∂p

(
1 + (αx + βp)2

)
, (8)

ṗ = {p,H} = −
∂H
∂x
{x, p} = −

∂H
∂x

(
1 + (αx + βp)2

)
. (9)

2



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 13, No. 2; 2021

3. Deformed Canonical Transformation

It is well known in the formulation of classical mechanics that, the transition from the canonical variables x and p to new
arbitrary canonical variables X and P which is called canonical transformation lets the physics of the system invariant.
Therefore, the canonical transformation of the variables x and p into the variables X and P defines a new Hamiltonian
K(X, P). It is defined by the map

x, p,H(p, x) 7−→ X, P,K(X, P), (10)

and the fundamental Poisson brackets read

{X, P}X,P = {X, P}x,p = {x, p}X,P = 1, (11)
{X, X}X,P = {P, P}X,P = 0. (12)

The equations of motion are given by

Ẋ = {X,K}, Ṗ = {P,K}. (13)

Moreover, under this transformation the old Hamiltonian H(P, X) is transformed into the new Hamiltonian as follows

K = H +
∂F
∂t
, (14)

where F is the generating function. Now, if we are convinced that the Poisson brackets are invariant under the canonical
transformation, then the deformation of the Poisson brackets must be also invariant under this transformation (Valtancoli,
2015), i.e

{x, p} = 1 + (αx + βp)2 −→ {X, P} = 1 + (αX + βP)2 . (15)

The time evolution of the coordinate X and the momentum P are given by

Ẋ = {Q,K} =
∂K
∂P

(
1 + (αX + βP)2

)
, (16)

Ṗ = {P,K} = −
∂K
∂X

(
1 + (αX + βP)2

)
. (17)

We are now in position to apply all of these aspects on the damped harmonic oscillator in order to study its equations of
motion.

4. Damped Harmonic Oscillator in SdS Space

The damped harmonic oscillator is one of the most fascinating systems that have remained over years a constant source
of inspiration in quantum physics ( Kanai, 1948; Caldirola, 1941). It has attracted much attention in the literature (
Pal, Nandi, & Chakraborty, 2018; Um, Yeon, & George, 2002; Pedrosa,& de Lima, 2014; Jannussis, & Bartzis, 1988;
Pedrosa,1987; Lawson, & Avossevou, 2018; Lawson, Sodoga,& Avossevou, 2021; Shang, 2009), since the problem
related to this system is far from having a satisfactory solution. In fact the quantization of dissipative systems well known
in the literature as Caldirola and Kanai system ( Kanai, 1948; Caldirola, 1941) has been criticized for violating certain laws
of quantum theory. Recently, a simple and complete solution has been provided (Lawson, Avossevou, & Gouba, 2018)
to this problem using the Lewis-Riesenfeld procedure (Lewis, & Riesenfeld 1969). Therefore, in the present situation we
are interested in the classical motion of this system in the minimal length scenario. In one dimension, its Hamiltonian is
given by

H(p, x) = e−γt p2

2
+
ω2

0

2
x2eγt, (18)

where we set m = 1, γ is the constant coefficient of friction and ω0 is the time-independent harmonic frequency. Since
this Hamiltonian is explicitly time-dependent, it does not represent a conserved quantity. So, we achieve its energy
conservation through the time-dependent canonical transformation given by the generating function of the second kind
(Pedrosa, & de Lima 2014)

F(x, p, t) = xpe
γt
2 −

γ

4
x2eγt. (19)

Perfoming the following transformation equations

X =
∂F
∂p

, P =
∂F
∂x
, (20)
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we obtain new canonical variables

X = xe
γ
2 t, P = pe−

γt
2 +

γ

2
xe

γt
2 . (21)

The relations between old (p, x) and new (P, X) coordinates can be written as(
p
x

)
=

(
e
γ
2 t −

γ
2 eγt

0 e−
γ
2 t

) (
P
X

)
,

(
P
X

)
=

(
e−

γ
2 t γe

γ
2 t

0 e
γ
2 t

) (
p
x

)
. (22)

Their Poisson brakets are canonical
{X, P} = 1 = {x, p}. (23)

The transformed Hamiltonian is given by

K(X, P, t) =
P2

2
+
ω2

2
X2, (24)

where

ω2 = ω2
0 −

γ2

4
, (25)

is the modified frequency. Since the new Hamiltonian is time independent, its conserved energy is

E =
P2

2
+
ω2

2
X2. (26)

The deformed Poisson brackets between the transformed canonical variables are

{X, P} = 1 + (αX + βP)2 , {X, X} = 0 = {P, P}. (27)

The equations of motion read as

Ẋ =
(
1 + (αX + βP)2

)
P, (28)

Ṗ = −ω2
(
1 + (αX + βP)2

)
X. (29)

After some computations, the solutions of the above equations are given by

X = A(t)
(
α

ω
sin$t − β

√
1 + 2κE cos$t

)
(30)

P = B(t)
(
β sin$t +

α

ω

√
1 + 2κE cos$t

)
(31)

where

κ = β2 +
α2

ω2 , $ = ω
√

1 + 2κE,

ωA(t) = B(t) =

√
2E

κ(1 + 2κE cos2 $t)
. (32)

The solutions are periodic, but not sinusoidal, and the frequency now depends on the energy of the oscillator. In the limit
α→ 0, one recovers the flat Snyder oscillator (Snyder, 1947).

Returning to the original variables x(t) and p(t) of the Hamiltonian (18) and with the help of the relation (21) we have:

x(t) = C(t)

 α sin Ωt√
ω2

0 − γ
2/4
− β

√
1 + 2κE(t) cos Ωt

 (33)

p(t) = D(t)

β sin Ωt +
α
√

1 + 2κE(t) cos Ωt√
ω2

0 − γ
2/4


−G(t)

 α sin Ωt√
ω2

0 − γ
2/4
− β

√
1 + 2κE(t) cos Ωt

 (34)

4



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 13, No. 2; 2021

where

Ω(t) =

√
(ω2

0 − γ
2/4)(1 + 2κE(t)) (35)

C(t) = e−
γt
2 A(t) =

e−
γt
2

(ω2
0 − γ

2/4)

√
2E(t)

κ(1 + 2κE(t) cos2 Ωt)
(36)

D(t) = e
γt
2 B(t) = e

γt
2

√
2E(t)

κ(1 + 2κE(t) cos2 Ωt)
(37)

G(t) =
γeγt

2
C(t). (38)

In first-order of the deformed parameter κ and the damped parameter γ, the frequency Ω and the period T of the motion
are given by

Ω = ω0

1 − γ2

8ω2
0

+ κE(t)
 , (39)

T =
2π
ω0

1 +
γ2

8ω2
0

− κE(t)
 , (40)

where we neglected the term of order βγ2. To zero-order in κ and γ i.e for κ = 0 = γ, we recover the ordinary solutions
of harmonic oscillator with frequency ω0 and period T0 = 2π

ω0
. If γ < 2ω0

√
2κE(t), the period of the motion is shorter

than the ordinary one T < T0, i.e the deformation of Poisson bracket which is the manifestation of an effect of gravity
induces a faster motion of the oscillator. But for γ > 2ω0

√
2κE(t), the period of the motion increase which means that the

dissipation of the system slows down the motion of the oscillator.

5. Conclusion

In this article, we first studied the properties of the 1D deformed Poisson brackets which are regarded as the classical
limit of the generalized Heisenberg commutators. Then, we reviewed the innovative concept of β-canonical transforma-
tion introduced by Valtancoli (Valtancoli; 2015) appointed in this work as the deformed canonical transformation. This
concept allowed us to maintain the invariance of the deformation of the Poisson brackets in the reparametrization of the
phase space variables. We applied all these theories to the well-known one dimensional damped harmonic oscillator.
With an appropriate canonical transformation, we transformed the time-dependent Hamiltonian into the time-independent
Hamiltonian. Based on (Valtancoli; 2015) we have shown that the solutions of the equations of motion can be expressed in
terms of trigonometric functions with the frequency and period depending on the deformed and the damped parameters of
the system. Finally, we discussed the influences these parameters on the motion. We have shown that when the deformed
parameter is greater than the damped parameter the period of the motion is shorter, conversely the period increases when
the damped parameter is greater than the deformed parameter.
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