Simplification of a System of Geodesic Equations by Reference to Conservation Laws
- Uchechukwu Opara
Abstract
This paper is purposed to exploit prevalent premises for determining analytical solutions to di erential equations formulated from the calculus of variations. We realize this premises from the statement of Emmy Noether’s theorem; that every system in which a conservation law is observed also admits a symmetry of invariance (Olver, 1993, pp.242; Dresner, 1999, pp.60-62 ). As an illustration, the infinitesimal symmetries for Ordinary Di erential Equations (O.D.E’s) of geodesics of the glome are explicitly computed and engaged following identification of a relevant conservation law in action. Further prospects for analysis of this concept over the same manifold are then presented summarily in conclusion.
- Full Text: PDF
- DOI:10.5539/jmr.v12n5p37
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org