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Abstract

This paper is purposed to exploit prevalent premises for determining analytical solutions to differential equations for-
mulated from the calculus of variations. We realize this premises from the statement of Emmy Noether’s theorem; that
every system in which a conservation law is observed also admits a symmetry of invariance (Olver, 1993, pp.242; Dres-
ner, 1999, pp.60-62 ). As an illustration, the infinitesimal symmetries for Ordinary Differential Equations (O.D.E’s) of
geodesics of the glome are explicitly computed and engaged following identification of a relevant conservation law in
action. Further prospects for analysis of this concept over the same manifold are then presented summarily in conclusion.
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1. Introduction

The 3-sphere, otherwise termed the glome, is a Riemannian manifold at the center of several revolutionary conjectures and
advancements in modern mathematical theory. As prominent examples, one may consider the famous Poincaré conjecture
and the Ricci Flow theorem of Hamilton on closed 3-dimensional manifolds with everywhere positive scalar curvature
(Cao et al., 2003, pp.128). The former example challenges an interested mind on meticulous details of differential topol-
ogy, while the latter is a relatively modern sprout of Pseudo-Riemannian geometry requiring assorted topological and
analytical tools. It may be argued that Hamilton’s theorem is conveniently suited towards verification of the Poincaré
conjecture from an assortment of partial vantage points.

In a prior pre-print publication by the author of this article (Opara, 2017), significant reference is made to the formulation
of the geodesic differential equations studied in this article. The requisite techniques harnessed from the calculus of
variations in the author’s prior arXiV publication cover issues such as well-posedness and determination of integral curves
of the formulated system of non-linear differential equations via suitable coordinate systems.

In this study however, the focus shifts to an aspect of the computational wealth available to be harnessed from conser-
vation laws in action during the course of analogous physical processes on the glome. Since the choice manifold is of
intermediate dimension, the computational work included may be readily confirmed manually, or it could perhaps moti-
vate an exploration of digital software for similar problems. An advantage of the choice of manifold here is that for many
coordinate systems used to capture it, the associated formulated equations have solutions in terms of elementary func-
tions. Moreover, the practical scientific essence of the choice manifold cannot be discarded, as several formulations from
the Ricci Flow are formally analogous to heat flow along manifolds and some formulations are adapted to the analysis
required in modern cosmological mechanics (Cao et al., 2003, pp. 95, 107).

In order to come to terms with a conservation law in play in the course of traversing geodesics of a smooth manifold by a
particle without slipping, one may consult the weak formulation process from the stage of differentiation in Banach path
spaces. Where the geodesic curve computed in the domain of a relevant coordinate system is parametrized by t, we may
recall that all such curves satisfy

Λui −
d
dt

(Λ .
ui

) = 0,

given the arclength functional

sI,t =

∫
I
Λ(t, u1(t), u2(t), · · · , un−1(t),

.
u1,

.
u2, · · · ,

.
un−1)dt

for an analytical hypersurface embedded in Rn and spatial parameters ui : 1 ≤ i ≤ n − 1 (Brunt, 2004, pp.33). Conser-

vation of the quantity
[
Λui −

d
dt

(Λ .
ui

)
]

mentioned above seems to bear analogy to a phenomenon in classical mechanics

independent of gravitational influence.
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2. Method of Formulation

The procedure for computing infinitesimal symmetries accommodated by the system of Euler-Lagrange equations is
detailed rather succinctly in the following two theorems.

Theorem 1 (Olver, 1993, pp.253) A connected group of transformations G acting on M is a variational symmetry group
of the functional sI,t if and only if

pr( j)v(Λ) + Λ
dξ
dt

= 0 ,

for all (t, u( j)) ∈ M and every infinitesimal generator

v = ξ(t, u)
∂

∂t
+

q∑
α=1

φα(t, u)
∂

∂uα

of G.

Theorem 2 (Olver, 1993, pp.255) If G is a variational symmetry group of the functional sI,t =
∫

I Λ(t, u)dt, then G is a
symmetry group of the associated Euler-Lagrange equations.

Consider the requisite Lagrangian computed in a prior publication by the author (Opara, 2017, pp.10) for discovering
equations of geodesics for the glome:

sI,u1 =

∫
I

√
1 + cos2 u1

(
du2

du1

)2

+ cos2 u1 cos2 u2

(
du3

du1

)2

du1 :=
∫

I
Λdu1

for an appropriate interval I ⊆ [−π2 ,
π
2 ]. We hereby reckon with the hyperspherical co-ordinate system,

f : [−π2 ,
π
2 ]2 × [0, 2π] −→ S 3 ⊂ R4

(u1, u2, u3) 7−→ f (u1, u2, u3) = (x1, x2, x3, x4)

f (u1, u2, u3) = (cos u1 cos u2 cos u3, cos u1 cos u2 sin u3, cos u1 sin u2, sin u1) .

For this study, we shall identify with the following renaming of variables:

(sI,u1 , u1, u2, u3) := (L, x, y, v).

Assuming that L accommodates an infinitesimal symmetry

v = ξ
∂

∂x
+ φ

∂

∂y
+ η

∂

∂v
,

we must equivalently have the following from Theorem 1 above:

pr(1)v(Λ) + Λ
dξ
dx

= 0.

We have taken j = 1 in the statement of the theorem, because no derivative in Λ is higher than the first. Now, we reckon

that pr(1)v = v + φx ∂

∂yx
+ ηx ∂

∂vx
, where

φx = Dx(φ − ξyx) + ξyxx

= φx + φyyx + φvvx − [ξxyx + ξy(yx)2 + ξvvxyx],
ηx = Dx(η − ξvx) + ξvxx

= ηx + ηyyx + ηvvx − [ξxvx + ξyyxvx + ξv(vx)2].

pr(1)v(Λ) =


ξ
∂

∂x
+ φ

∂

∂y
+ η

∂

∂v
+

φx + φyyx + φvvx − [ξxyx + ξy(yx)2 + ξvvxyx]+
ηx + ηyyx + ηvvx − [ξxvx + ξyyxvx + ξv(vx)2]

 (Λ)

=
ξ

2Λ
(−2(cos x sin x)y2

x − 2(cos x sin x cos2 y)v2
x) +

φ

2Λ
(−2(cos2 x cos y sin y)v2

x)

+
1

2Λ
(φx + φyyx + φvvx − [ξx + ξyyx + ξvvx]yx)(cos2 x).2yx

+
1

2Λ
(ηx + ηyyx + ηvvx − [ξx + ξyyx + ξvvx]vx)(cos2 x cos2 y).2vx .

38



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 5; 2020

3. Computational Results

For fulfillment of admittance of the infinitesimal symmetry criterion derived above from Theorem 1, we must solve the
equation:

Λ.pr(1)v(Λ) + Λ2.(ξx + ξyyx + ξvvx) = 0.

We hence evaluate the coefficients of the various uneliminated monomials involved in this equation to zero, as obtained
in the table below.

MONOMIAL COEFFICIENT
1 ξx = 0 (a)
yx φx cos2 x + ξy = 0 (b)
vx ηx cos2 y cos2 x + ξv = 0 (c)

(yx)2 −ξ cos x sin x + φy cos2 x = 0 (d)
(vx)2 −ξ sin x cos y − φ cos x sin y + ηv cos x cos y = 0 (e)
yxvx ηy cos2 x cos2 y + φv cos2 x = 0 ( f )

We determine the following system of equations from the constraints obtained above in the table of monomial coefficients.

(a.) ξ = ξ(y, v), (b.) ξy = −φx cos2 x, (c.) ξv = −ηx cos2 x cos2 y, (d.) ξ = φy cot x,

(e.) − ξ sin x cos y − φ cos x sin y + ηv cos x cos y = 0, ( f .) ηy cos2 y + φv = 0.

From (a.), we have ξ to be a function of y and v alone.

From (b.), we have ξyy = −φxy cos2 x, and from (d.),

φxy cos2 x = ξ

by differentiating partially with respect to x. Upon comparison with (b.),
ξyy = ξ. Hence, we determine that ξ = α(v) cos y + β(v) sin y .

Substituting this back in (d.), φ = tan x[α(v) sin y − β(v) cos y] + γ(v, x).

From (c.), we have
α′(v) cos y + β′(v) sin y = −ηx cos2 x cos2 y ⇔

η = −α′(v) sec y tan x − β′(v) tan y sec y tan x + δ(y, v) .

Upon substitution of the above obtained expressions for φ and η in ( f .), we realize that

−2β′(v) sec y tan x + δy cos2 y + γv = 0

after simplification. Substituting the expressions obtained for ξ, η and φ in (e.), we realize that

(−α(v) − α′′(v) − β′′(v) tan y) tan x − γ sin y + δv cos y = 0.

We shall take {k j} j∈N to be arbitrary constants in what ensues. Feasible deductions from the above equation are the
following:

(I.) α(v) + α′′(v) = 0 ⇔ α(v) = k1 cos v + k2 sin v
(II.) β(v) = k3
(III.) δv = γ tan y
(IV.) γ = γ(v)

As such, from (III.) and (IV.) we have δy = κ(v) sec2 y, where κ =
∫
γ(v)dv. Substituting these values in the modi-

fied equation for ( f .), we realize∫
γ(v)dv + γv = 0 =⇒ γ(v) + γvv = 0 =⇒ γ(v) = k4 cos v + k5 sin v.

The final variable needed to be determined is δ :

δ =

∫
γdv tan y = [k4 sin v − k5 cos v] tan y.
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Upon determining solutions to this system, we observe a general accommodated infinitesimal symmetry of the system of
O.D.E’s for the glome’s geodesics via the hyperspherical coordinate system:

v = [(k1 cos v + k2 sin v) cos y + k3 sin y]
∂

∂x
+[(k1 cos v + k2 sin v) tan x sin y − k3 tan x cos y + k4 cos v + k5 sin v]

∂

∂y

+[(k1 sin v − k2 cos v) tan x sec y + (k4 sin v − k5 cos v) tan y]
∂

∂v
.

We can then separate this general symmetry into one-parameter symmetries by the five constants {ki}
5
i=1 as follows -

5∑
i=1

kiχi.

By computing the Lie brackets of these accommodated single parameter subgroups, one can then determine stability of
the infinitesimal symmetry system, and determine the subgroups of the overall admitted invariance symmetry group of
the Lagrangian in question. A sixth accommodated infinitesimal symmetry is actually revealed in this process, being the

trivial translation one-parameter group
[
χ6 =

∂

∂v

]
. Computation of Lie brackets is particularly instrumental in reducing

the associated Euler-Lagrange ordinary differential equation system, by exposing the right invariants to be employed
together. The element in the i’th row and j’th column of the table of Lie brackets below is the vector field [χi, χ j].

Note that the characterization of Lie brackets

[X,Y] f = X(Y( f )) − Y(X( f ))

for X = Xi ∂
∂xi
,Y = Y j ∂

∂x j
and any C∞ function f gives us the formula

[X,Y] =
∑

i

∑
j

{
X j ∂Y i

∂x j
− Y j ∂Xi

∂x j

}
∂

∂xi
.

χ1 χ2 χ3 χ4 χ5 χ6

χ1 0 −χ6 −χ4 χ3 0 χ2
χ2 χ6 0 −χ5 0 χ3 −χ1
χ3 χ4 χ5 0 −χ1 −χ2 0
χ4 −χ3 0 χ1 0 −χ6 χ5
χ5 0 −χ3 χ2 χ6 0 −χ4
χ6 −χ2 χ1 0 −χ5 χ4 0

We hereby ascertain stability of the accommodated Lie group of infinitesimal symmetries for the formulated geodesic
variational problem, with four subgroups listed below.

(a.) {χ1, χ2, χ6}

(b.) {χ1, χ3, χ4}

(c.) {χ4, χ5, χ6}

(d.) {χ2, χ3, χ5}

A significant prospective benefit of the computation done here is an avenue for utilisation of joint invariants of any sub-
group of the differential equation system in an effort to simplify the simultaneous pair of O.D.E’s determined via the
Lagrangian. However, in this body of work, we shall make direct reference to the collapsed equation in (Opara, 2017,
pp.10):

.
y sin x cos y(k − 2 cos2 x cos2 y) +

..
y cos x cos y(cos2 x cos2 y − k) + k sec x sin y + k(

.
y)2 cos x sin y − (

.
y)3 cos4 x sin x cos3 y =

0 · · · (E = 0)

derived from substituting the outcome of one Euler-Lagrange equation:

Λv −
d
dx

(Λ .
v) = 0,
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in the formulation of the second equation in the pair:

Λy −
d
dx

(Λ .
y) = 0.

For emphasis, the constant k in the O.D.E above is in the interval [0, 1] and an overset dot connotes differentiation with
respect to the independent variable x of the system. The reader may confirm that (E = 0) accommodates the one-
parameter subgroup [χ3 = sin y ∂

∂x − cos y tan x ∂
∂y ] computed earlier, since [pr(2)χ3(E) = 0] whenever [E = 0]. Reckoning

with the common benefit of knowledge of an accommodated one-parameter symmetry of an O.D.E, we have foresight
that the equation [E = 0] of the second order would be reduced to a significantly simpler equation of lower order, upon
replacement of the variables x and y with the canonical coordinates of the symmetry χ3. Let the canonical coordinates of
this symmetry be (τ, ω), whereby ω is the invariant and τ the other canonical coordinate. To determine ω, we solve the
equation

dx
siny

=
dy

− tan x cos y
,

revealing that
cos x. cos y = [constant] .

This means we may take ω to be cos x cos y, or any smooth function of this term. Moreover,

τ =

∫
dx

sin y

whereby y is expressed in terms of x and ω (using ω = cos x cos y), and ω is momentarily taken as a constant when
evaluating this integral (Hydon, 2000, pp.24). Thus, we obtain τ(x, y) = arctan(cot x sin y) as the second canonical
coordinate.

Besides the infinitesimal form of a one-parameter symmetry, the global form also reveals other details present. The global
form (X(x, y, λ),Y(x, y, λ)) is determined by integrating the autonomous O.D.E system:

dX
dλ

= sin Y ,
dY
dλ

= − tan X cos Y

subject to the initial constraints (X,Y)|λ=0 = (x, y), whereby x and y are temporarily taken as constants in the course of
integration. The solutions obtained here are

X = arcsin[sin x cos λ − cos x sin y sin λ] and Y = arctan[tan y cos λ + tan x sec y sin λ].

These functions satisfy the customary requirements: ω(X,Y) = ω(x, y) and τ(X,Y) = τ(x, y) + λ.

4. Discussion

The equation [E = 0] in focus becomes significantly simpler upon replacement of the initial variables (x, y) with the
canonical coordinates (τ, ω) of the accommodated symmetry we have engaged. Specifically, this equation impressively
reduces to the first order representation:

ω′(τ) = (1 − ω2) tan

± arccos

√
α − (ω2 cos2 τ + sin2 τ)

( k
ω2 − 1)(ω2 cos2 τ + sin2 τ)

+ arctan
(
ω

tan τ

) .
Another constant α of integration in the first order O.D.E above comes about at a stage of the simplification process from
the prior form [E = 0].

A comparison of this result to what holds for the geodesic equation of the simpler 2-sphere (S 2) reveals some interesting
connections. This sphere is obtained as the intersection of the glome S 3 with the hyperplane [v ≡ 0]. Capturing this
manifold with the same spherical coordinate system used above for S 3 yields the geodesic differential equation:

d2y
dx2 = 2

dy
dx

tan x +

(
dy
dx

)3

sin x cos x .

This equation also accommodates the symmetry [χ3 = sin y ∂
∂x − cos y tan x ∂

∂y ], which was used to simplify the geodesic
equation for the glome. It may be argued that this inherited symmetry of the geodesic equations is based on the fact that S 2
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is a totally geodesic hypersurface of S 3. Simply put, all geodesics of the submanifold S 2 are also geodesics of the glome,
which apparently corroborates the shared symmetry of their geodesic differential equations. Determination of totally
geodesic hypersurfaces invariably simplifies any theoretical and computational considerations from closed Riemannian
manifolds.

In general, the geodesic equation for (S 2) admits the 3-dimensional infinitesimal rotation group on Euclidean 3-space
(Stephani, 1989, pp.78), which could contribute otherwise to reduction via invariance transformations for the equation
[E = 0] we have engaged. Because none of the admitted symmetries was used in collapsing the required pair of Euler-
Lagrange equations to obtain [E = 0], the resulting equation may retain invariance under those infinitesimal symmetries
in terms of the variables x and y. As a major part of what has been established in the previous section, the geodesic
equations for (S 3) admit the 6-dimensional infinitesimal rotation group (S O4) on Euclidean 4-space. Hence, there ap-
parently remains a number of significant consequential properties to be harnessed from this identified symmetry group
classification, considering also their explicit functional expressions herein made available.

5. Conclusion

Geodesics constitute a class of minimal submanifolds of closed 3-manifolds. Another class of minimal submanifolds is
that of minimal hypersurfaces. This latter class of 2-dimensional minimal submanifolds are particularly well suited to the
study of intrinsic properties of their ambient manifolds in static or evolutionary states (Anciaux, 2011, pp.18 - 27). As a
matter of definite interest, minimal hypersurfaces have been explored severally in academic archives to elucidate details
of manifolds’ evolution in course of the Ricci Flow. In the weak formulation of Partial Differential Equations (P.D.E’s) for
stable minimal hypersurfaces, it is relevant to attempt identification of conservation laws in action. In this way, Noether’s
theorem becomes a guarantor of simplification of the associated P.D.E’s by accommodated symmetries.

Besides probing the inner geometry of 3-manifolds using minimal hypersurfaces, the solitons of Ricci Flow are character-
ized as equilibrium states of the metrics in the diffusion-reaction equations in process (Cao et al., 2003, pp.4). This again
gives rise to associated conservation laws and an invaluable avenue to engage Noether’s theorem. Since its discovery, this
theorem has been at the hub of simplification achievements for systems of differential equations, but the chosen vantage
point of the glome has specifically been seen to conceal a plethora of theoretical wealth in this regard.
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