The Minimum Numbers for Certain Positive Operators
- Ching-Yun Suen
Abstract
In this paper we give upper and lower bounds of the infimum of k such that kI+2ReT⊗Sm is positive, where Sm is the m×m matrix whose entries are all 0’s except on the superdiagonal where they are all 1’s and T∈BH for some Hilbert space H.
When T is self-adjoint, we have the minimum of k.
When m=3 and T∈B(H) , we obtain the minimum of k and an inequality
Involving the numerical radius w(T) .
- Full Text: PDF
- DOI:10.5539/jmr.v12n5p15
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org