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Abstract

In this paper we give upper and lower bounds of the infimum of k such that kI + 2Re(T & S,,,) is positive, where
Sm 15 the m X m matrix whose entries are all 0’s except on the superdiagonal where they are all 1’s and T € B(H)
for some Hilbert space H.

When T is self-adjoint, we have the minimum of k.

When m =3 and T € B(H) , we obtain the minimum of k and an inequality

Involving the numerical radius w(T).
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1. Introduction

Let B(H) denote the algebra of all bounded linear operator on a Hilbert space H. Given T € B(H), we say that
T € C,(0 < p < o) if there is a unitary operator U on a Hilbert space K containing H as a subspace, such that
T" = pPyU™|y(n = 1,2,3,...). Sz-Nagy and Foias introduced the class C, [6], J. A. R. Holbrook[4] and J. P.

Williams[9] defined the operator radii w,(T) = inf {r >0:le cp} . When p=2, then wy(T)=w(T) the
numerical radius of T. In the paper we provide upper and lower bounds which are best numbers for certain positive

operators. Ando and Okubo [1] introduce D, = (g p1(2 - p)) and pw,(T) =2w(D, ®T) for 1<p <2
—-p

We obtain the minimum of k such that

kI +2Re(D, ® T) =0 forall m =2 isequalto pw,(T) for 1 <p <2.

If T is self-adjoint, we prove the minimum of k such that

kI +2Re(T®S,,) =0 forall m > 2 isequal to 2cos#|lT|l.

1
Finally, we prove an inequality v2w(T) < |ITT* + T*T||z < 2w(T).

2. W, Norms (1< p <2)
Definition 2.1. [9] Let H and K be Hilbert spaces and suppose that U € B(H) and V € B(K). Then there is a
unique operator U ® V € B(H ® K) such that
UQVY(h®k)=Uh)Q@V(k) for he H and k € K.
Lemma22 w,(SQ®T) < |IT|lw,(S) for p > 0.
Proof. Since S® 1 and I ® T are double commuting operators, applying [5],
we have
w,(S®T) =w,((S® DU ®T))
Sw, QDI QT =w, (S DIITI.
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Since WL(S) = pPyU|, for some unitary operator U and Hilbert space H,
p

We have

(Wps‘( 5® D" =p(Py @ DU @ D"lugx for some Hilbert space K.
S

Thus =) K1 € (),

Hence

w,(§ @ 1) < w,(S).
From the proof of [7, Proposition 2.1], we know the following Lemma:

2 T 00
Lemma -2.3;If--(7;; 2 : (,:n) = 0, thenw(T)w(S,,) < 1-where
0 0 T° 2/ ;mum
01 00
Sm= (00 9] with m>2 and T € B(H).
0 . 0 0/hm
A
Proof. Let 1= "2 | with Al = 1and R =k for i=12,...,m,
Am
where h € H with ||h|| = 1, then
1.0 - 0 2 T 00 1 0 0 hy
<[00z - T 2 =~ 0 0 z =~ h,
P w0 0 -~ -~ T P .
0 = 0 zm N0 0 T" 2/ um N0 0 z™ ' \hp
hy 2 zT 00 hy hy
h, _ zT* 2 “ 0 h, h;
L|>=< 0 o T I A B
- 0 0 zT* 2/ ,um \hnm A,

= 2+ 2Re(z < SyAL,A><Th,h>)=0 for |z| =1.
Similarly, we have

2 —2Re(z < Sy, A ><Th,h >) >0

Thus

[Rez < SuA, A ><Th,h>] <1 forall |z| =1.

Hence

|[< SpA, A ><Th,h>| < 1.

From [1], we know that D, = (g p1(2 B p)) and pw,(T) =2w(D, ® T)for 1 <p < 2.
4

Lemma 2.4.

W(Sm) < W, (Sp) < %w(sm), for 1<p<2and m>2.

Proof. Applying Lemma 2.2, we have w, (S,,)= %W(Dp ® Sp) < %w(Sm).

We have upper and lower bounds for certain positive operators in the following:
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kKT 00
Theorem-2.5. 2w (S, )w(T) < inf‘{'k:-( 0* k ‘_ % > 0}
O O Tw k mxm
< 2w(S)IIT|| for afixed positive integer m > 2.
kT 00
Proof.-Applving Lemuna 2.3, if - 7(; k (,} =0
0 0 T k

then
2w(TYyw(Sy) < k.
Applying Lemma 2.2, we have
WSMIITI = w(T ® Sp) = supjy=1{ReAT ® Spn)
> ReA(T ® S,,), forall |A] =1.

2w SHITI T 0 0
Wehave the m X m matrix - 7;] g.
0 0 T 2w(S)ITI

=2WwSIITI+T @ Sy + T & Sy = 2(W(SIITIl + Re(T @ S;n)) = 0.
If T is self-adjoint, we obtain the minimum value of k in the following:
Corollary 2.6. If T =T, then

k T 0 0
min{k: [Tk =0 > 0} = 2w(S,)IITIl = 2cos —=—||T||, for m > 2
‘o =~ -~ T = m mer 101 =<

0 0 T* k/pmxm
Proof. From [3], we know that (S,,) = cos —— .

Applying Lemma 2.2 and Theorem 2.5, we have the following Theorem:

Theorem 2.7.
k D,®T 00

min {k: (L, ®T) k -0 >0, forallm = 2} = pw,(T),for 1<p < 2.
0 - D,®T
0 0 D, ®T)" k

mxXm
Proof. Applying Lemma 2.2, we have w(D, ® T) Zw(D, ® T ® S,,,) for all m = 2. From the proof of Theorem
2.5, we also have the m X m matrix

2w, ®T) D, QT 0 0
( D, ®T)" 0 \
0 ~ D, ®T
\ 0 0 D, ®T)" 2w(D, ®T)

=2(w(D,®T)+Re(D, ®T ® Sp)) =0 .
Applying Theorem 2.5, we have
2w(Sw(D, ® T) <

17



http://jmr.ccsenet.org Journal of Mathematics Research \Vol. 12, No. 5; 2020

k D, ®T 0 0

i [ (D, ®T)° k - 0

inf {k: 0 D,®T =0}
0 0 (D, ®T)" k

mxm
<2w (D, ® T) = pw,(T), forall m > 2and 1 <p < 2.

Let m — oo, we have the Theorem.

We obtain [7, Proposition 2.2] in the following:

kK T 0O
Corollary 2.8. min {k: 7;) ko % >0, forall m =2} = 2w(T).
0 0 T k/ pxm
Proof. Let p = 2 in Theorem 2.7.
Example 2.9. From Corollary 2.6, we have
k1 00
min {k (1) k (1) >0, form22}=2cos#.
0 0 1 k/mxm
and from Corollary 2.8, we have
k1 0 0
min {k: (é k (1)> >0, forallm=>2} =2.
0 0 1 k

mXxXm

Corollary 2.10. If T isidempotent (thatis, T2 =T) and T # 0,

k  D,Q®T 00
Then min {k: (D, ? LY k . OD QT >0,forallm=2}=|T||+p—-1 for 1<p <2.
. . )
0 0 D, ®T) k

mxm

Proof. By [2, Theorem 6 (1)], pw,(T) = [IT|l + p — 1.
We obtain an inequality involving the numerical radius of T in the following:

1
Corollary 2.11. V2w(T) < |ITT* + T*T||z < 2w(T) . Moreover, if T is normal (that is T*T =TT*), then

ITIl < V2w(T).
k T 0 X
Proof. From [8], we have in {k: (T* k T) >0}= |ITT*+T'T|z .
0 T k

By Theorem 2.5 and Corollary 2.8, we have

1
2w(S)W(T) < |ITT* + T*T|z < 2w(T).

k s, O
Example 2.12. Since 2w(s3)w(s,) = 22 < min{k: (sz* k 52> >0} =1 < 2w(sy)lIs,|l = V2, we have the

0 s, k

IS

lower and upper bounds of Theorem 2.5. Also, V2 w(T) and 2w(T) are the best constants in the inequality of
Corollary 2.11.
3. Conclusion

We have minimum norms for certain positive operators with finite or infinite size.
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