A Portfolio of Risky Assets and Its Intrinsic Properties
- Pierpaolo Angelini
Abstract
We show a canonical expression of a univariate risky asset. We find out a canonical expression of the product of two univariate risky assets when they are jointly considered. We find out a canonical expression of a portfolio of two univariate risky assets when it is viewed as a stand-alone entity. We prove that a univariate risky asset is an isometry. We define different distributions of probability on R inside of metric spaces having di erent dimensions. We use the geometric property of collinearity in order to obtain this thing. We obtain the expected return on a portfolio of two univariate risky assets when it is viewed as a stand-alone entity. We also obtain its variance. We show that it is possible to use two di erent quadratic metrics in order to analyze a portfolio of two univariate risky assets. We consider two intrinsic properties of it. If a portfolio of two univariate risky assets is viewed as a stand-alone entity then it is an antisymmetric tensor of order 2. What we say can be extended to a portfolio of more than two univariate risky assets.
- Full Text: PDF
- DOI:10.5539/jmr.v12n3p61
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org