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Abstract

We show a canonical expression of a univariate risky asset. We find out a canonical expression of the product of two
univariate risky assets when they are jointly considered. We find out a canonical expression of a portfolio of two univariate
risky assets when it is viewed as a stand-alone entity. We prove that a univariate risky asset is an isometry. We define
different distributions of probability on R inside of metric spaces having different dimensions. We use the geometric
property of collinearity in order to obtain this thing. We obtain the expected return on a portfolio of two univariate risky
assets when it is viewed as a stand-alone entity. We also obtain its variance. We show that it is possible to use two different
quadratic metrics in order to analyze a portfolio of two univariate risky assets. We consider two intrinsic properties of it.
If a portfolio of two univariate risky assets is viewed as a stand-alone entity then it is an antisymmetric tensor of order 2.
What we say can be extended to a portfolio of more than two univariate risky assets.
Keywords: collinearity, affine tensor, antisymmetric tensor, isometry, α-norm, α-product

1. Introduction

We consider a univariate risky asset denoted by X = {x1, x2, . . . , xm}. We observe that x1 is the return on X if E1 occurs,
x2 is the return on X if E2 occurs, . . . , xm is the return on X if Em occurs. We note that x1 is the wealth that X yields
if E1 occurs, x2 is the wealth that X yields if E2 occurs, . . . , xm is the wealth that X yields if Em occurs. We say
that E1, E2, . . . , Em are incompatible and exhaustive events of a finite partition of events (Berkelaar, Kouwenberg, &
Post, 2004). We consequently note that X is a univariate random quantity whose possible monetary values denoted by
x1, x2, . . . , xm are all different. One and only one of them will be true a posteriori (de Finetti, 1982a). We assign to each
xi of X a subjective probability pi, i = 1, . . . ,m, where we have p1 + p2 + . . . + pm = 1. We consider a distribution of
probability in this way. It is denoted by

[(x1, p1), (x2, p2), . . . , (xm, pm)]. (1)

We will also deal with a stand-alone entity coinciding with a portfolio of two univariate risky assets denoted by X12 =

{1X , 2X}. We observe that 1X and 2X are two univariate risky assets. We say that 1X and 2X are the components of
X12. We suppose that each of them has m possible monetary values. We say that an inverse linear relationship exists
between 1X and 2X . We do not consider only two marginal univariate distributions of probability connected with 1X
and 2X together with their joint distribution. We will also consider another distribution of probability. It derives from
the two marginal univariate distributions of probability as well as from the joint distribution. We will summarize it in
order to obtain the expected return on X12 when it is viewed as a stand-alone entity. We will also obtain its variance.
Probability is defined with respect to events. We say that it is not correct to identify events with sets in a systematic way.
An event is not always a subset belonging to a larger closed structure containing different subsets of a given nonempty
set, so probability is not always a measure. It is not always necessary to transpose the concepts of measure theory into the
calculus of probability. There exist situations for which it is correct to say that an event is a single random case coinciding
with a well-determined proposition. Such a proposition will be true or false at the right time. Probability viewed as a non-
negative and additive function taking the value 1 on the whole space of events is then a mass. Probability can subjectively
be distributed on particular points in the space of a random quantity. It is a linear space. We will realize that these
points are real numbers. If a single random case coinciding with a well-determined proposition is contained in a random
quantity then it is expressed by a real number. On the other hand, if we say that probability exists on its own because it
does not depend on the mental or instinctive evaluations that a given investor makes of a given random event at a given
instant with a given set of information then we use a metaphysical notion of probability. If we say that probability exists
outside of him in the sense that it does not exist in his own judgment then we use a metaphysical notion of probability. If
we say that probability must externally be represented like something acting behind the universe which can be observed
according to its own axioms then we use a metaphysical notion of probability. We will realize that it is possible to replace
a closed structure represented by a σ-algebra with another one expressed by a linear subspace over R because we use a
mechanical meaning of probability (Berti, Pratelli, & Rigo, 2015). Such a meaning is naturally compatible with all axioms
of probability (Koopman, 1940). We consequently say that an event has an intrinsic meaning because we do not choose
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a particular orthonormal basis of the linear space under consideration among all its possible orthonormal bases. We have
to note a very important point: the criteria for the evaluation of probability can be different (de Finetti, 1982b). However,
they lead to an evaluation which is always subjective. This is because an equiprobable judgment is itself subjective.
Such a judgment intrinsically characterizes symmetric probability. Concerning frequentist probability, it makes sense
that each investor relates probability back to observed frequency only when he specifies the meaning and conditions of
this thing. Symmetric probabilities as well as frequentist probabilities are only elements of judgment evaluated by each
investor on the basis of his own judgment. Subjective probability results from this necessary judgment. On the other
hand, it is not excluded that subjective probability coincides with symmetric probability. It is not even excluded that
subjective probability coincides with frequentist probability. We have to note another very important point: we do not
say that probability viewed as a mass is not a measure (Good, 1962). Nevertheless, it is not a fixed measure. Different
distributions of a unit mass on particular points in a linear space are different measures. We nevertheless believe that such
measures must be subjective. In general, events and points are not then bound by an evaluation of probability which is
always the same because it is a predetermined evaluation. It follows that probability viewed as a mass can coherently be
moved by an investor according to his subjective opinion (Anscombe & Aumann, 1963).

2. A Mathematical Definition of a Univariate Risky Asset

We consider an m-dimensional linear space over R provided with a Euclidean metric on it. We denote it by Em. Given an
orthonormal basis of Em denoted by {e j}, j = 1, . . . ,m, any m-dimensional vector of Em is uniquely expressed by means
of a linear combination of basis vectors. We write

x = x1e1 + x2e2 + . . . + xmem (2)

as well as
x = xiei, (3)

where we have

x =


x1

x2

...
xm

 ∈ Em. (4)

We suppose that it turns out to be xi , x j, i, j = 1, . . . ,m, so we are able to write x1 < x2 < . . . < xm without loss of
generality. Also, it is possible to show that each contravariant component of x ∈ Em can be viewed as an m-dimensional
vector of Em denoted by (i)x, i = 1, . . . ,m. We therefore write

(1)x = x1e1, (5)

with x1 ∈ R, as well as
(m)x = xmem, (6)

with xm ∈ R. We observe that (1)x and e1 are collinear as well as (m)x and em. It follows that it turns out to be

(1)x + . . . + (m)x = x, (7)

where each (i)x is an element of an one-dimensional subspace of Em denoted by Em
(i), i = 1, . . . ,m. We write

Em
(1) ⊕ . . . ⊕ Em

(m) = Em (8)

because the direct sum of m one-dimensional subspaces of Em coincides with Em itself. We note that this direct sum is
also orthogonal. We write

dim Em
(1) + . . . + dim Em

(m) = dim Em, (9)

where we have dim Em = m. The contravariant components of (i)x are given by

(i)x = (i)x
iδ

j
i , (10)

where we have i = 1, . . . ,m. We note that δ j
i denotes the Kronecker delta. If it turns out to be i = j then we have δ j

i = 1.
If it turns out to be i , j then we have δ j

i = 0. We note that (10) is characterized by the Einstein summation convention.
Thus, we are able to write

(i)x =


(i)x

1δ1
1 + (i)x

2δ1
2 + . . . + (i)x

mδ1
m

(i)x
1δ2

1 + (i)x
2δ2

2 + . . . + (i)x
mδ2

m
...

(i)x
1δm

1 + (i)x
2δm

2 + . . . + (i)x
mδm

m

 , (11)
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where we have i = 1, . . . ,m. Having said that, we are able to consider m oriented straight lines of Em which are measured
in the same unit of length (von Neumann, 1936). They are pairwise orthogonal. The point where they meet is the origin
of Em. It is the zero vector of Em. We do not consider particular m-tuples of real numbers belonging to every straight line
of Em but we consider only real numbers connected with each of them. This thing results from the geometric property of
collinearity that we have considered. We consequently say that a univariate risky asset denoted by X is a finite partition
of incompatible and exhaustive events generically denoted by E1, E2, . . . , Em such that one and only one of them will be
true a posteriori (Tversky, & Kahneman, 1992). We evidently realize that X is a univariate random quantity (He, & Zhou,
2011). Each possible monetary value of X = {x1, x2, . . . , xm} is associated with a single random event. Each possible
monetary value of X belongs to one of m straight lines of Em. Each straight line of Em represents the whole of the space
of alternatives (whose number is infinite) with respect to one of m alternatives of X. Each point on a straight line of Em

corresponds to a single and possible alternative of X and vice versa. Concerning one of m alternatives of X we observe
that information and knowledge of a given investor at a given instant permit him of not to excluding a real number only
(deGroot, 1962). It remains possible for him because it is not either true or false. We evidently consider a limitation of
expectations in this way (Piccinato, 1986). The same thing goes by thinking of all other alternatives of X.

3. A Canonical Expression of A Univariate Risky Asset

We have realized that all events contained in X are embedded in Em (de Finetti, 1972a). An event always coincides with
a well-determined proposition. An event contained in X coincides with a well-determined proposition expressed by a real
number (de Finetti, 1980). Probability meant as a mass is defined inside of a metric space. The probability of an event is
contained in the prevision or expected value or mathematical expectation of a random quantity. The notion of prevision
of a random quantity is a unique notion (Berti, Regazzini, & Rigo, 2001). It is called probability in the case of events.
Hence, the same symbol P is used in order to denote both the prevision of a random quantity and the probability of an
event (Coletti, Scozzafava, & Vantaggi, 2015). Anyway, we deal with m masses denoted by p1, p2, . . . , pm such that we
write p1 + p2 + . . .+ pm = 1 (de Finetti, 1972b). They are located on m components denoted by x1, x2, . . . , xm of m vectors
denoted by (1)x, (2)x, . . . , (m)x of Em. We consider a distribution of probability on R inside of Em in this way (de Finetti,
1964). This is because x1, x2, . . . , xm are real numbers. We have evidently {x1} ∈ R, with (1)x = x1e1 ∈ Em

(1), . . . , {xm} ∈ R,
with (m)x = xmem ∈ Em

(m). After writing

w = x1|E1|e1 + x2|E2|e2 + . . . + xm|Em|em, (12)

with w ∈ Em, where {e j}, j = 1, . . . ,m, is an orthonormal basis of Em, it turns out to be

X = x1|E1| + x2|E2| + . . . + xm|Em|, (13)

where we have

|Ei| =

1, if Ei is true
0, if Ei is false

(14)

for every i = 1, . . . ,m. We consider m elementary events (constituents) of a finite partition of incompatible and exhaustive
events. They are generically denoted by E1, E2, . . . , Em. We consequently observe that X is an identity function such that
it is possible to write

idR : R→ R, (15)

where R is a linear space over itself and it is of dimension 1. We say that X is a linear operator whose canonical expression
coincides with (13). We say that X is an isometry. It follows that each single event could uniquely be expressed by infinite
numbers, so we could also write {x1 + a, x2 + a, . . . , xm + a}, where a ∈ R is an arbitrary constant. This means that
we consider infinite translations in this way. We consider different quantities from a geometric viewpoint. They are
nevertheless the same quantity from a randomness viewpoint because events and probabilities associated with them do
not change. On the other hand, if two or more than two propositions can express the same event contained in X then two
or more than two real numbers can uniquely identify it. We say that a change of origin is inessential from a randomness
viewpoint. On the other hand, we are always able to lead back the changed origin to the starting one. Hence, we consider
a different closed structure in this way. Such a structure is not a σ-algebra but it is a linear subspace over R. We deal
with m subspaces of dimension 1 because every event contained in X belongs to one of them according to (12). On the
other hand, a univariate risky asset X = {x1, x2, . . . , xm} viewed as an m-dimensional vector of Em is an element of a set of
univariate risky assets denoted by (1)S . We note that it turns out to be

(1)S ⊂ Em, (16)

where (1)S is an m-dimensional linear space contained in Em. This is because the sum of two vectors belonging to (1)S
must be a vector whose components are all different. Thus, it belongs to (1)S in this way. We say that it belongs to (1)S
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if and only if its components are all different. The same thing goes when we consider the multiplication of a vector of

(1)S by a real number that is different from zero. Hence, we say that (1)S is closed with respect to the sum of two vectors
of it and the multiplication of a vector of it by a real number that is different from zero. We consider a closed structure
coinciding with an m-dimensional linear space contained in Em in this way. We note that Em can also be viewed as an
affine space over itself. Each element of Em is firstly an m-dimensional vector viewed as an ordered list of m real numbers.
Nevertheless, each element of Em can also be viewed as a point of an affine space, where the zero vector of Em is the
origin of it. Thus, the zero vector of Em characterizes an affine frame of Em when it is viewed as an affine space. An
affine frame of Em viewed as an affine space consists of a point coinciding with the zero vector of Em and an orthonormal
basis of Em. We are able to consider a point of an affine space having m coordinates or a vector of a linear space having
m components. We choose a covariant notation with respect to the components of p ∈ Em, so we write

p =


p1
p2
...

pm

 , (17)

where pi represents a subjective probability assigned to xi, i = 1, . . . ,m, by a given investor according to his degree of
belief in the occurrence of xi (Pfanzagl, 1967). We note that it turns out to be

∑m
i=1 pi = 1 because we consider a coherent

evaluation of the probabilities associated with every single event (Zank, 2010). It is finitely additive (Nunke, & Savage,
1952) Different investors whose state of knowledge is hypothetically identical may choose different pi whose sum is
equal to 1 (Coletti, Petturiti, & Vantaggi, 2014). Indeed, each of them may subjectively give greater attention to certain
circumstances than to others. In any case, if we write

(x,p) ⊂ Em (18)

then we identify a distribution of probability embedded in a linear space provided with a Euclidean metric on it. Such a
distribution can always vary from investor to investor (de Finetti, 1989). Moreover, it can also vary with respect to the
state of information of a given investor. A coherent prevision of X is given by

P(X) = x1P(E1) + x2P(E2) + . . . + xmP(Em). (19)

It is linear and homogeneous. It is the expected return on the univariate risky asset under consideration (Slovic, Fischhoff,
& Lichtenstein, 1977). From P(Ei) = pi, i = 1, . . . ,m, it follows that it turns out to be

P(X) = x1 p1 + x2 p2 + . . . + xm pm. (20)

We have to note a very important point: we should exactly speak about components of x and p having upper and lower
indices because we deal with an orthonormal basis of Em. It is consequently possible to show that the covariant compo-
nents of every m-dimensional vector of Em coincide with the contravariant ones. We use these terms because we are able
to stress that x and p are of a different nature in this way. This is because the possible values of X are objective unlike any
evaluation of the probabilities associated with every single event connected with {x1, x2, . . . , xm}.

4. A Canonical Expression of the Product of Two Univariate Risky Assets

Given a portfolio of two univariate risky assets denoted by X12 = {1X , 2X}, we observe that 1X and 2X are two marginal
univariate risky assets whose possible monetary values are

1X = {(1)x
1, (1)x

2, . . . , (1)x
m} (21)

and
2X = {(2)x

1, (2)x
2, . . . , (2)x

m}. (22)

They are the components of X12. We write

(1)x =


(1)x

1

(1)x
2

...

(1)x
m

 ∈ Em (23)

as well as

(2)x =


(2)x

1

(2)x
2

...

(2)x
m

 ∈ Em, (24)
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where {e j}, j = 1, . . . ,m, is again an orthonormal basis of Em. We note that each (1)x
i is associated with (1)Ei, i = 1, . . . ,m,

while each (2)x
i is associated with (2)Ei, i = 1, . . . ,m, where

{(1)E1, (1)E2, . . . , (1)Em} (25)

as well as
{(2)E1, (2)E2, . . . , (2)Em} (26)

are two finite partitions of incompatible and exhaustive events. They are elementary events. Having said that, we jointly
consider 1X and 2X , so we write

T = (1)x
1

(2)x
1|(1)E1||(2)E1|e1 ⊗ e1 + (1)x

1
(2)x

2|(1)E1||(2)E2|e1 ⊗ e2 + . . . + (1)x
m

(2)x
m|(1)Em||(2)Em|em ⊗ em, (27)

where T ∈ Em ⊗ Em = Em
(2) is an affine tensor of order 2. We have to note a very important point: we are indifferently able

to consider either (1X , 2X) or (2X , 1X). We consider (1X , 2X), so

{(1)E1 ∧ (2)E1, (1)E1 ∧ (2)E2, . . . , (1)Em ∧ (2)Em} (28)

is a finite partition of incompatible and exhaustive events. They are elementary events. They are overall m2. We observe
that {ei ⊗ e j}, i, j = 1, . . . ,m, is an orthonormal basis of Em ⊗ Em. There are m2 summands in (27) because we have
dim(Em ⊗ Em) = m2. On the other hand, each ei ⊗ e j, i, j = 1, . . . ,m, is always an m × m matrix which is isomorphic to
an m2-dimensional basis vector of Em2

. We consider m2 straight lines of Em2
in this way. They are pairwise orthogonal.

They are the axes of the coordinate system under consideration. We are able to consider a distribution of probability on
R inside of Em2

in this way. We use the geometric property of collinearity with respect to Em2
. This means that we deal

with m2 masses located on m2 components denoted by (1)x
i
(2)x

j, i, j = 1, . . . ,m, of m2 vectors of Em2
. We note that each

(1)x
i
(2)x

j, i, j = 1, . . . ,m, is a real number. A canonical expression of the product of two risky assets 1X and 2X is given by

1X2X = (1)x
1

(2)x
1|(1)E1||(2)E1| + (1)x

1
(2)x

2|(1)E1||(2)E2| + . . . + (1)x
m

(2)x
m|(1)Em||(2)Em|, (29)

where we have

|Ei||E j| =

1, if Ei and E j are both true
0, otherwise

(30)

for every i, j = 1, . . . ,m. A coherent prevision of the product of two risky assets 1X and 2X is then expressed by

P(1X2X) = (1)x
1

(2)x
1P((1)E1 ∧ (2)E1) + (1)x

1
(2)x

2P((1)E1 ∧ (2)E2) + . . . + (1)x
m

(2)x
mP((1)Em ∧ (2)Em). (31)

It is bilinear and homogeneous with respect to Em ⊗ Em. We say that it is an α-product between (1)x and (2)x denoted by

(1)x � (2)x. From P((1)Ei ∧ (2)E j) = pi j, i, j = 1, . . . ,m, where we have
∑m

i=1
∑m

j=1 pi j = 1, it follows that it turns out to be

P(1X2X) = (1)x
1

(2)x
1 p11 + (1)x

1
(2)x

2 p12 + . . . + (1)x
m

(2)x
m pmm, (32)

so it is possible to write
Cov(1X , 2X) = P(1X2X) − P(1X)P(2X), (33)

where P(1X) is a coherent prevision of 1X , while P(2X) is a coherent prevision of 2X . A coherent prevision of 1X2X
denoted by P(1X2X) can also be expressed by

1 x̄2 x̄ = (1) x̄
i1

(2) x̄
i2 ei1 ⊗ ei2 , (34)

where 1 x̄2 x̄ is an affine tensor of order 2 whose contravariant components are all equal. They coincide with P(1X2X) =

1X̄2X̄ , where P(1X2X) = 1X̄2X̄ has evidently been obtained by means of p = (pi1i2 ) = (pi j). This is because we speak
about an α-product between (1)x and (2)x. We have to note another very important point: when we write P((1)Ei ∧ (2)E j) =

pi j, i, j = 1, . . . ,m, we mean that only a subjective and coherent evaluation of probability is always required (Gilio, &
Sanfilippo, 2014). No concept concerning probability can therefore be imposed on probability (Pompilj, 1957). We note
that it is possible to measure the degree of belief of a given investor in the occurrence of a random event by using the
notion of fair bet on it (Coletti, Petturiti, & Vantaggi, 2016a). It is then possible to observe which real or conceptual bets
on it are judged to be fair by him at a given instant (Coletti, Petturiti, & Vantaggi, 2016b). We note that those bets in which
a given investor with a given set of information at a given instant accepts to be either bettor or bookmaker are judged to be
fair by him. In particular, we always consider an investor who hypothetically bets one dollar on different events denoted
by (1)Ei ∧ (2)E j, i, j = 1, . . . ,m, belonging to a finite partition of incompatible and exhaustive events. Hence, all these
bets are fair when and only when the certain gain denoted by

∑m
i=1

∑m
j=1 pi j that he judges to be equivalent to a unit gain

conditional on the occurrence of
∑m

i=1
∑m

j=1 (1)Ei ∧ (2)E j is equal to 1 (de Finetti, 1981).
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5. A Portfolio of Two Univariate Risky Assets Identified With an Antisymmetric Tensor and Its Expected Return

We denote by X12 = {1X , 2X} a portfolio of two univariate risky assets belonging to (2)S
(2), where (2)S

(2) is a set of
portfolios of two univariate risky assets. We note that it turns out to be

(2)S
(2) ⊂ Em ⊗ Em, (35)

so we realize that (2)S
(2) is a linear space contained in Em ⊗ Em. If we write

T = (1)x
i1

(2)x
i2 |(1)Ei1 ||(2)Ei2 |ei1 ⊗ ei2 (36)

then we deal with an ordered pair of two univariate risky assets denoted by (1X , 2X). We have to observe that 1X and 2X
are firstly two quantities, although they are two random quantities. If we conversely consider (2X , 1X) then we have to
write

T = (2)x
i2

(1)x
i1 |(2)Ei2 ||(1)Ei1 |ei2 ⊗ ei1 . (37)

We obtain the same tensor denoted by T characterized by different contravariant components in this way. The contravariant
components of T expressed by (37) are not the same of the ones expressed by (36). They depend on the ordered pair of
univariate risky assets that could be considered. We have consequently to consider (36) and (37) together in order to
release a tensor representation of X12 from any ordered pair of univariate risky assets which could be considered, (1X , 2X)
or (2X , 1X). If we express T by considering both (36) and (37) then we observe that m of m2 contravariant components are
always equal. It is therefore possible to say that the possible values of X12 can be expressed by means of the contravariant
components of an antisymmetric tensor of order 2. It is then given by

T =
∑
i1<i2

[
((1)x

i1
(2)x

i2 |(1)Ei1 ||(2)Ei2 | − (1)x
i2

(2)x
i1 |(1)Ei2 ||(2)Ei1 |)

]
ei1 ⊗ ei2 . (38)

We say that (38) is a canonical expression of X12 when it is viewed as a stand-alone entity. Having said that, we denote
by 12 f an antisymmetric tensor of order 2 identifying the possible values of X12. The contravariant components of 12 f are
then expressed by

12 f (i1i2) =

∣∣∣∣∣∣∣∣∣(1)x
i1 |(1)Ei1

| (1)x
i2 |(1)Ei2

|

(2)x
i1 |(2)Ei1

| (2)x
i2 |(2)Ei2

|

∣∣∣∣∣∣∣∣∣ . (39)

These components are equal to 0 when they have equal contravariant indices. They are then equal to 0 when it turns out
to be i1 = i2. They are not contained in (39) for this reason. We have always i1 < i2 in (39), with i1, i2 ∈ Im = {1, . . . ,m}. It
follows that the antisymmetric tensors of order 2 identify a linear space whose dimension is equal to

(
m
2

)
, where we have(

m
2

)
< m2. (40)

We have to speak about probabilities in order to define X12 without shortcomings. We firstly confirm that the tensor
of the joint probabilities denoted by p = (pi1i2 ) is an affine tensor of order 2. Its covariant components are overall m2.
They represent those subjective probabilities connected with the ordered pairs of contravariant components of vectors
identifying the marginal univariate risky assets 1X and 2X of X12. We secondly consider those vector homographies that
allow us to pass from the contravariant components of a type of vector to the covariant components of another type of
vector by means of p = (pi1i2 ). We are therefore able to define the covariant components of 12 f in this way. In analytic
terms one has

(1)x
i1 pi1i2 = (1)xi2 (41)

and
(2)x

i2 pi1i2 = (2)xi1 (42)

by virtue of a specific convention that we introduce: if the covariant indices to right-hand side of (41) and (42) vary over
all their possible values then we obtain two sequences of values whose elements are overall (m + m). They identify those
products between all contravariant components of an m-dimensional vector representing a univariate risky asset of X12 and
a fixed contravariant component of the other m-dimensional vector, where all these components are considered together
with their probabilities. It turns out to be

12 f(i1i2) =

∣∣∣∣∣∣∣∣∣(1)xi1 (1)xi2

(2)xi1 (2)xi2

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣(1)x
i2 pi2i1 (1)x

i1 pi1i2

(2)x
i2 pi2i1 (2)x

i1 pi1i2

∣∣∣∣∣∣∣∣∣ . (43)
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For instance, we obtain

(1)x
i1 pi1i2 = (1)x

1
(2)x

1P((1)E1 ∧ (2)E1) + (1)x
2

(2)x
1P((1)E2 ∧ (2)E1) + . . . + (1)x

m
(2)x

1P((1)Em ∧ (2)E1), (44)

where all these events are incompatible. We consequently continue to deal with m2 masses located on m2 components
denoted by (1)x

i1
(2)x

i2 , i1, i2 ∈ Im = {1, . . . ,m}, of m2 vectors of Em2
in this way. The covariant indices of the tensor p can

be interchanged, so it is also possible to write

(1)x
i1 pi1i2 = (1)x

i1 pi2i1 . (45)

We are able to compute the α-norm of the tensor 12 f after defining X12. It is given by

‖12 f ‖2α = 12 f � 12 f = 12 f (i1i2)
12 f(i1i2), (46)

so it turns out to be

‖12 f ‖2α =
1
2!

∣∣∣∣∣∣∣∣∣(1)x
i1

(1)x
i2

(2)x
i1

(2)x
i2

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣(1)xi1 (1)xi2

(2)xi1 (2)xi2

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣(1)x
i1

(1)x
i1 p(11)

i1i1 (1)x
i2

(2)x
i1 p(12)

i1i2

(2)x
i1

(1)x
i2 p(21)

i2i1 (2)x
i2

(2)x
i2 p(22)

i2i2

∣∣∣∣∣∣∣∣∣ . (47)

We note that it appears 1
2! in the second side of (47) because we have two determinants. We have therefore two per-

mutations of two indices connected with them. Each determinant of the second side of (47) has evidently two indices.
The first determinant has contravariant indices. The second determinant has covariant indices. Hence, we are in need of
returning to “normality” by means of 1

2! . Conversely, it does not appear 1
2! in the third side of (47) because we have only

one determinant. We observe that the first element of the first row of the third side of (47) is obtained by multiplying (1)x
i1

by (1)xi1
. We obtain the second element of the first row of the third side of (47) by multiplying (1)x

i2 by (2)xi2
. We obtain

the first element of the second row of the third side of (47) by multiplying (2)x
i1 by (1)xi1

. We obtain the second element
of the second row of the third side of (47) by multiplying (2)x

i2 by (2)xi2
. Having said that, it is possible to write

‖12 f ‖2α =

∣∣∣∣∣∣∣∣∣
‖(1)x‖

2
α (1)x � (2)x

(2)x � (1)x ‖(2)x‖
2
α

∣∣∣∣∣∣∣∣∣ (48)

as well as

‖12 f ‖2α =

∣∣∣∣∣∣∣∣∣
P(1X1X) P(1X2X)

P(2X1X) P(2X2X)

∣∣∣∣∣∣∣∣∣ . (49)

We have consequently established that the expected return on a portfolio X12 of two univariate risky assets coincides with
the α-norm of 12 f , so we write

‖12 f ‖2α = P(X12) = X̄12 = P(1X1X) · P(2X2X) − P(1X2X) · P(2X1X). (50)

Given XA
12 and XB

12, where XA
12 is a portfolio of two univariate risky assets and XB

12 is another portfolio of two univariate
risky assets, if it turns out to be

P(XA
12) > P(XB

12) (51)

then XA
12 is preferred to XB

12 (Markowitz, 1952). We also say that XA
12 has a greater subjective utility than XB

12 (Nau, 2006).
We observe that an investor coherently behaves when he maximizes the expected return on a portfolio of two univariate
risky assets (Johnson, & Payne, 1985). Conversely, if it turns out to be

P(XB
12) > P(XA

12) (52)

then XB
12 is preferred to XA

12 (MacCrimmon, 1968). We therefore say that XB
12 has a greater subjective utility than XA

12. We
lastly write

(2)S
(2)∧ ⊂ Em∧

(2) , (53)

where the linear space of the antisymmetric tensors of order 2 is denoted by Em∧
(2) .
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6. A Portfolio of Two Univariate Risky Assets and Its Variance

Given X = {x1, x2, . . . , xm}, its expected return is expressed by means of the vector x̄ = (x̄i) whose contravariant compo-
nents are all equal. It allows of defining a univariate risky asset representing deviations denoted by Xd . This univariate
risky asset is evidently defined over X by means of P(X). We write

xd = x − x̄, (54)

where xd is an m-dimensional vector of Em. Its contravariant components are given by

xdi = xi − x̄i. (55)

We deal with a linear transformation of X. It is a change of origin. We observe that the expected return on Xd is necessarily
given by

P(Xd) = (xi − x̄i)pi = 0. (56)

The α-norm of the vector representing Xd is given by

‖xd‖2α = (xdi)2 pi = σ2
X . (57)

It geometrically represents an estimate of the variance of X. It represents an estimate of the riskiness of this univariate
risky asset. Having said that, we consider two univariate risky assets representing deviations which are respectively

1Xd
and

2Xd . They are defined over 1X and 2X , where we have X12 = {1X , 2X}. They are represented by the vectors (1)d and

(2)d whose contravariant components are given by

(1)d
i = (1)x

i − (1) x̄
i (58)

and
(2)d

i = (2)x
i − (2) x̄

i. (59)

It is therefore possible to introduce an antisymmetric tensor of order 2 denoted by 12d . It characterizes X12
d , where X12

d is
a portfolio of two univariate risky assets representing deviations. It is defined over X12. Its contravariant components are
then given by

12d(i1i2) =

∣∣∣∣∣∣∣∣∣(1)d
i1

(1)d
i2

(2)d
i1

(2)d
i2

∣∣∣∣∣∣∣∣∣ . (60)

Its covariant components are given by

12d(i1i2) =

∣∣∣∣∣∣∣∣∣(1)di1 (1)di2

(2)di1 (2)di2

∣∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣(1)d
i2 pi2i1 (1)d

i1 pi1i2

(2)d
i2 pi2i1 (2)d

i1 pi1i2

∣∣∣∣∣∣∣∣∣ . (61)

The α-norm of the tensor 12d is then expressed by

‖12d‖2α =

∣∣∣∣∣∣∣∣∣
‖(1)d‖

2
α (1)d � (2)d

(2)d � (1)d ‖(2)d‖
2
α

∣∣∣∣∣∣∣∣∣ , (62)

where it turns out to be (1)d � (2)d = Cov(1X , 2X). We have consequently established that an estimate of the variance of a
portfolio X12 of two univariate risky assets coincides with the α-norm of 12d , so we write

‖12d‖2α = Var(X12) = ‖(1)d‖
2
α · ‖(2)d‖

2
α − ((1)d � (2)d) · ((2)d � (1)d). (63)

Given XA
12 and XB

12, if it turns out to be
Var(XA

12) > Var(XB
12) (64)

then XA
12 is riskier than XB

12 (Davies, & Satchell, 2007). We observe that an investor coherently behaves when he minimizes
the riskiness of a portfolio of two univariate risky assets (Brooks, & Zank, 2005). Conversely, if it turns out to be

Var(XB
12) > Var(XA

12) (65)

then XB
12 is riskier than XA

12 (Wakker, 1994).
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7. Two Different Quadratic Metrics

We have established a non-linear metric expressed by (62) characterizing a portfolio of two univariate risky assets denoted
by X12 = {1X , 2X}. If X12 is a stand-alone entity then it is an antisymmetric tensor of order 2. It is then possible to show
that X12 coincides with a particular geometric shape. We will show that a non-linear metric is invariant with respect to two
different translations concerning (1)d and (2)d. These two different translations are obtained by considering two different
arbitrary m-dimensional vectors of Em. Also, it is even invariant with respect to two different rotations concerning (1)d
and (2)d. These two different rotations are obtained by considering two different orthogonal m×m matrices. A non-linear
metric is different from a linear metric. A linear metric is expressed by

‖(1)d − (2)d‖
2
α = ‖(1)d‖

2
α + ‖(2)d‖

2
α − 2((1)d � (2)d). (66)

Such a metric does not deal with X12 when it is viewed as a stand-alone entity but it deals with two univariate risky
assets when they are the marginal univariate components of X12 (Abdellaoui, Bleichrodt, & Paraschiv, 2007). These two
univariate risky assets are 1X and 2X . We therefore observe that X12 is defined through its marginal univariate components
when we speak about a linear metric expressed by (66) (Bernard, & Ghossoub, 2010). We will show that a linear metric is
invariant with respect to two different translations concerning (1)d and (2)d. These two different translations are obtained
by considering two different arbitrary m-dimensional vectors of Em. It is not invariant with respect to two different
rotations concerning (1)d and (2)d. These two different rotations are obtained by considering two different orthogonal
m × m matrices. We have to note a very important point: a non-linear metric as well as a linear metric are both quadratic
because it is not mathematically appropriate to define a non-quadratic metric. We consequently say that a portfolio of
more than two univariate risky assets is always characterized by more than one antisymmetric tensor of order 2, where
every antisymmetric tensor of order 2 represents a stand-alone bivariate entity. What we have said is then more general
than one might think at first.

8. An Intrinsic Property of a Portfolio of Two Univariate Risky Assets

Given a univariate risky asset denoted by X, we consider the following
Theorem 1 Let x′ = x−g(x) be a vector of Em, where g is a linear transformation from Em to Em whose associated matrix
is non-singular. Given z ∈ Em, let Tz(x) and Tz(x′) be two translations with respect to it. If it turns out to be z = g(z) then
xd′ = x − g(x) ∈ Em is invariant under translation.
Proof. We have

Tz(x) : x⇒ x + z (67)

as well as
Tz(x′) : x′ ⇒ x′ + z. (68)

They are two translations with respect to z ∈ Em, where z is a vector of Em that we choose. Given

x′ = x − g(x), (69)

it is then possible to write
Tz(x′) = Tz[x − g(x)] = Tz(x) − Tz[g(x)]. (70)

Since g is a linear transformation, we are able to write

Tz(x′) = Tz(x) − g[Tz(x)]. (71)

The translation that appears as a minuend in (71) is given by (67). We have to define the translation that appears as a
subtrahend in (71): we write

g[Tz(x)] : g(x)⇒ g(x + z). (72)

We therefore obtain
Tz(x′) : x − g(x)⇒ x + z − g(x + z) (73)

after considering (67) and (72) in (68). We have to establish which is that condition according to which it is possible to
say that x′ = x − g(x) is invariant under translation. It is then expressed by

x − g(x) = x + z − g(x + z). (74)

Since g is a linear transformation we write

x − g(x) = x + z − g(x) − g(z). (75)
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We therefore say that x′ is invariant under translation because it turns out to be

z = g(z). (76)

The equality expressed by (76) exists when g is a linear transformation viewed as an identity function applied to Em. It
exists when z is the zero vector of Em. On the other hand, these two cases can be viewed as degenerate cases. It also exists
when z is a constant. It therefore exists when z represents the expected return on X, so its contravariant components are
all equal. Hence, from (69) it follows that it is possible to write

xd′ = xd − g(xd), (77)

where it turns out to be xd = x − x̄. We consequently write

xd′ = (x − x̄) − g(x − x̄) = x − x̄ − g(x) + g(x̄). (78)

Since we have g(x̄) = x̄ it turns out to be
xd′ = x − g(x). (79)

This means that (79) coincides with the vector x′ expressed by (69). We have proved that (79) is that vector which is
invariant under translation. It represents all deviations of x from x̄. �
We consider the following
Corollary If y is a vector of Em freely chosen then it turns out to be Ty(xd) = Ty(xd′) = xd.
Proof. We write

Ty(xd) : xd ⇒ xd + y = x − x̄ + y (80)

with regard to xd. We write
Ty(xd′) : xd′ ⇒ xd′ + y = x − g(x) + y (81)

with regard to xd′. By making equal (80) and (81) it turns out to be

x − x̄ + y = x − g(x) + y. (82)

We observe that we write g(x) = x̄, so the vector representing deviations is invariant under translation. We observe that
(82) does not depend on y ∈ Em, where y is a vector of Em that we freely choose. We lastly write

Ty(xd) = Ty(xd′) = xd. (83)

We have then proved how an m-dimensional vector of Em denoted by xd is invariant under translation. �

What we have said can evidently be extended to (1)d and (2)d. Given two arbitrary vectors u and t of Em, we say that it is
possible to write

‖(1)d − (2)d‖
2
α = ‖Tu((1)d) − Tt((2)d)‖2α (84)

according to (83). This means that a linear metric is invariant with respect to two different translations concerning (1)d
and (2)d. We note that the contravariant components of u with respect to an orthonormal basis of Em are all equal. The
same thing goes with respect to the contravariant components of t. If (83) holds then we are able to say that a non-linear
metric expressed by (62) is invariant with respect to two different translations concerning (1)d and (2)d. We are able to
consider different translations concerning the possible monetary values of each risky asset contained in a portfolio. It is
then possible to deal with different portfolios of risky assets whose riskiness is the same although their expected return is
not the same.

9. Another Intrinsic Property of a Portfolio of Two Univariate Risky Assets

Given xd ∈ Em, we wonder what it happens if xd is subjected to a rotation by using A, where A = (ai′
j ) is an m×m matrix.

It is an orthogonal matrix whose upper index represents its rows. Its columns are represented by the j index. We write

RA(xd) : xd ⇒ A(xd) = R
x d, (85)

where R
x d is an m-dimensional rotated vector belonging to Em. It is possible to show that its contravariant and covariant

components are different from the ones of xd. We observe that (56) does not invariably hold when it regards RX , where
RX denotes that X has been rotated. We note that it suffices to consider all its deviations. We are therefore able to say that
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RX and X are two different univariate risky assets. It suffices to consider their deviations only. On the other hand, it is
possible to show that their variance is the same, so we write

‖RA(xd)‖2α = ‖xd‖2α. (86)

Having said that, we refer to a portfolio of two univariate risky assets when it is viewed as an antisymmetric tensor of
order 2. We consider all deviations of these two univariate risky assets. We show the following
Theorem 2 If (1)d ∈ Em and (2)d ∈ Em are subjected to two different rotations respectively expressed by A = (ai1′

i2
) and

B = (bi1′
i2

) then it turns out to be ‖R12d‖2α = ‖12d‖2α.
Proof. We consider

R
(1)d

i1′ = (1)d
i2 ai1′

i2
, (87)

where we deal with m linear and homogeneous relationships that allow us of passing from the contravariant components
of a type of vector to the ones of another type of vector. This is because A is an m × m matrix. It is an orthogonal matrix.
On the other hand, we consider

R
(2)d

i1′ = (2)d
i2 bi1′

i2
, (88)

where we deal with m linear and homogeneous relationships that allow us of passing from the contravariant components
of a type of vector to the ones of another type of vector. This is because B is an m × m matrix. It is an orthogonal matrix.
We also consider

R
(1)di1′ = (1)di2 ai2

i1′
, (89)

where we deal with m linear and homogeneous relationships that allow us of passing from the covariant components of
a type of vector to the ones of another type of vector. In general, we take the product between each value of a vector
representing deviations and its corresponding probability into account when we consider its covariant components. We
deal with the transpose of A in (89). We have

R
(2)di1′ = (2)di2 bi2

i1′
(90)

as well, where we deal with m linear and homogeneous relationships that allow us of passing from the covariant compo-
nents of a type of vector to the ones of another type of vector. In general, we take the product between each value of a
vector representing deviations and its corresponding probability into account when we consider its covariant components.
We deal with the transpose of B in (90). Having said that, we already know that it is possible to write

‖R12d‖2α =
1
2!

∣∣∣∣∣∣∣∣∣(1)d
i2 ai1′

i2 (1)d
i1 ai2′

i1

(2)d
i2 bi1′

i2 (2)d
i1 bi2′

i1

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣(1)di2

ai2
i1′ (1)di1

ai1
i2′

(2)di2
bi2

i1′ (2)di1
bi1

i2′

∣∣∣∣∣∣∣∣∣ (91)

as well as

‖R12d‖2α =

∣∣∣∣∣∣∣∣∣
‖(1)d‖

2
α ((1)d � (2)d)ai1′

i2
bi2

i1′

((2)d � (1)d)bi1′
i2

ai2
i1′

‖(2)d‖
2
α

∣∣∣∣∣∣∣∣∣ , (92)

so it turns out to be

‖R12d‖2α = ‖(1)d‖
2
α · ‖(2)d‖

2
α − ((1)d � (2)d)2ai1′

i2
bi2

i1′
bi1′

i2
ai2

i1′

= ‖(1)d‖
2
α · ‖(2)d‖

2
α − ((1)d � (2)d)2(ai1′

i2
ai2

i1′
)(bi2

i1′
bi1′

i2
)

= ‖(1)d‖
2
α · ‖(2)d‖

2
α − ((1)d � (2)d)2

(93)

because A and B are both orthogonal. We lastly write

‖R12d‖2α = ‖12d‖2α. (94)

We have therefore proved that a non-linear metric is invariant with respect to two different rotations concerning (1)d and

(2)d. �
On the other hand, it is possible to show that a linear metric is not invariant with respect to two different rotations
concerning (1)d and (2)d. We note that it is possible that R

x d contains fewer possible and distinct values than xd. We
therefore observe that the corresponding probabilities of the remaining and distinct values of R

x d increase. On the other
hand, R

x d and xd always represent two univariate risky assets whose riskiness is the same. The same thing evidently goes
when we consider R

(1)d and (1)d as well as R
(2)d and (2)d. We are consequently able to consider different portfolios of

univariate risky assets whose riskiness is the same.
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10. Conclusions

We have shown a canonical expression of a univariate risky asset. We have found out a canonical expression of the
product of two univariate risky assets when they are jointly considered. We have found out a canonical expression of a
portfolio of two univariate risky assets when it is viewed as a stand-alone entity. We have proved that a univariate risky
asset is an isometry. We have defined different distributions of probability on R inside of metric spaces having different
dimensions. We have used the geometric property of collinearity in order to obtain this thing. We have computed the
expected return on a portfolio of two univariate risky assets when it is viewed as an antisymmetric tensor of order 2. We
have also computed its variance. We have considered two intrinsic properties of a portfolio of it. What we have said can
be extended to a portfolio of more than two univariate risky assets.
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