Statistical Inference on Semiparametric Spatial Additive Model
- Chuanhua Wei
- Ran Yan
- Tao Tao
Abstract
There has been a growing interest on using nonparametric and semiparametric modelling techniques for the analysis of spatial data because of their powerfulness in extracting the underlying local patterns in the data. In this study, stimulated by the Boston house price data, we apply a semiparametric spatial additive model to incorporation of spatial e ects in regression models. For this semiparametric model, we develop a linear hypothesis test of parametric coecients as well as a test for the existence of the spatial e ects. For the problem of variable selection, the adaptive Lasso method was applied. Monte Carlo simulation studies are conducted to illustrate the finite sample performance of the proposed inference procedures. Finally, an application in Boston housing data is studied.- Full Text: PDF
- DOI:10.5539/jmr.v12n2p1
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org