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Abstract

There has been a growing interest on using nonparametric and semiparametric modelling techniques for the analysis of
spatial data because of their powerfulness in extracting the underlying local patterns in the data. In this study, stimulated
by the Boston house price data, we apply a semiparametric spatial additive model to incorporation of spatial effects
in regression models. For this semiparametric model, we develop a linear hypothesis test of parametric coefficients as
well as a test for the existence of the spatial effects. For the problem of variable selection, the adaptive Lasso method
was applied. Monte Carlo simulation studies are conducted to illustrate the finite sample performance of the proposed
inference procedures. Finally, an application in Boston housing data is studied.

Keywords: spatial additive model, profile least-squares approach, backfitting method, adaptive lasso

1. Introduction

The Boston house price data of Rubinfeld (1978) and Gilley and Pace (1996) is frequently used in literature to illustrate
some new statistical methods. The data set consists of the median value of owner-occupied homes in 506 census tracts in
the Boston Standard Metropolitan Statistical Area in 1970, and 13 accompanying sociodemographic and related variables,
and is available through the R package Sedep.

For the Boston house price data, to capture the “large-scale” locational effects between response variable and the associ-
ated 13 covariates, Pace and Gilley (1997) proposed the following linear regression model

yi =

13∑
j=1

β jxi j + β14uivi + β15ui + β16vi + β17u2
i + β18v2

i + εi, i = 1, 2, · · · , 506, (1)

where (ui, vi) is the latitude(LAT) and longitude(LON) of the ith observation. However, sometimes, the quadratic expres-
sion involving latitude and longitude is not adequate for the real locational effects. To solve this problem, we apply the
following semiparametric spatial additive model to fit the data set

yi = f (ui) + g(vi) + xT
i β + εi, i = 1, 2, · · · , n, (2)

where yi and xi = (xi1, xi2, · · · , xip)T are observations of the response and associated explanatory variables at location
(ui, vi) in the studied geographical region, β = (β1, β2, · · · , βp)T is a vector of p-dimensional unknown parameters, and
εi is model error with mean zero and variance σ2. f (·) and g(·) are unknown smooth functions of latitude and longitude
respectively. For the identifiability of nonparametric functions, we assume that E

[
f (u)

]
= 0 and E

[
g(v)

]
= 0. Without

loss of generality, we also assume that both the yi and xi have been centered about their respective means. Model (2) can
be regarded as an extension of the following semiparametric spatial model of McMillen (2012),

yi = m(ui, vi) + xT
i β + εi, i = 1, 2, · · · , n.

where m(u, v) is an unknown nonparametric function on the latitude and longitude. Compared with spatial autoregressive
models, spatial erorr model and other standard spatial econometric models, model (2) does not require use of an n × n
spatial weight matrix W, and has a greater flexibility to deal with spatial effects.

It is remarked that model (2) is a special partially linear additive models in statistical literature, which have been studied
by Li (2000), Jiang et al. (2007), Liang et al. (2008), Liu et al. (2011), Wei and Liu (2012), more details can be found
in Li and Racine (2007). In this paper, we focus on the statistical inference of model (2), including testing and variable
selection.

1



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 2; 2020

This rest of this paper is organized as follows. We introduce the profile least-square estimation approach in Section
2. Testing for the parametric and nonparametric components is discussed in Section 3. Section 4 studies the variable
selection procedure. Simulations are studied in Section 5 to illustrate the performance of the proposed approaches. As an
application example, the Boston house price data are analyzed by the proposed methods in Section 6. Discussion is given
in Section 7.

2. Profile Least-Squares Estimation

As the basis for the problem of testing and variable selection of model (2), estimation of model (2) is first briefly described
in this section. Many methods can be applied to estimate model (2), we apply the profile least-square approach of Liang
et al. (2008) and Wei and Liu (2012) as its simplicity.

Let

Y =


y1
y2
...

yn

 ,X =


xT

1
xT

2
...

xT
n

 , f =


f (u1)
f (u2)
...

f (un)

 , g =


g(v1)
g(v2)
...

g(vn)

 , ε =


ε1
ε2
...
εn

 ,
then, model (2) can be written as

Y = Xβ + f + g + ε. (3)

Suppose the parametric components β and the nonparametric function g are known, then model (2) becomes the following
standard nonparametric regression model

y∗i = f (ui) + εi, i = 1, 2, · · · , n, (4)

with y∗i = yi − xT
i β − g(vi). We apply the local linear approach to estimate the nonparametric function f (·). Assume that

f (ui) has a continuous second derivative for any fixed u, then by Taylor expansion, we have

f (ui) ≈ f (u) + f ′(u)(ui − u), i = 1, 2, · · · , n.

Then, we can estimate f (u) and f ′(u) by the following weighted local least-squares problems:

n∑
i=1

{
[yi − XT

i β − g(vi)] −
[
f (u) + f ′(u)(ui − u)

]}2
Kh1 (ui − u), (5)

with kernel function Kh1 (·) = K(·/h1)/h1, and bandwidth h1. By solving the problem (5), we obtain the initial estimator
of f (u) as

f̂ (u) = eT
1 {D

T
u KuDu}

−1DT
u Ku(Y − Xβ − g), (6)

with e1 = (1, 0)T, Ku = diag{Kh1 (u1 − u),Kh1 (u2 − u), · · · ,Kh1 (un − u)}, and

Du =


1 u1 − u
1 u2 − u
...

...
1 un − u

 ,Su =


eT

1 {D
T
u1

Ku1 Du1 }
−1DT

u1
Ku1

eT
1 {D

T
u2

Ku2 Du2 }
−1DT

u2
Ku2

...
eT

1 {D
T
un

Kun Dun }
−1DT

un
Kun

 .

We take u to be each of u1, u2, · · · , un, together with the condition
n∑

i=1
f (ui) = 0, we can obtain the estimator of f as

f̂ =
[
f̂ (u1), f̂ (u2), · · · , f̂ (un)

]T
= S∗u(Y − Xβ − g). (7)

with S∗u = (In − 11T)Su,

Similarly, the estimator of g is
ĝ =

[
ĝ(v1), ĝ(v2), · · · , ĝ(vn)

]T
= S∗v(Y − Xβ − f), (8)

with S∗v = (In − 11T)Sv,

Sv =


eT

1 {D
T
v1

Kv1 Dv1 }
−1DT

v1
Kv1

eT
1 {D

T
v2

Kv2 Dv2 }
−1DT

v2
Kv2

...
eT

1 {D
T
vn

Kvn Dvn }
−1DT

vn
Kvn

 ,Dv =


1 v1 − v
1 v2 − v
...

...
1 vn − v

 .
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Combining (7) and (8), we have the following backfitting estimating equation system[
In S∗1
S∗2 In

] [
f
g

]
=

[
S∗1
S∗2

]
(Y − Xβ). (9)

By Hastie and Tibshirani (1990) and Opsomer and Ruppert (1997), the estimators of f and g can be obtained as

f̂ = W1(Y − Xβ), ĝ = W2(Y − Xβ), (10)

with W1 = In − (In − S∗uS∗v)−1(In − S∗u), W2 = In − (In − S∗vS∗u)−1(In − S∗v).

Replacing f and g of (3) by their estimators f̂ and ĝ, respectively, we can obtain a synthetic linear regression model

(In − S)Y = (In − S)Xβ + ε, (11)

with S = W1 + W2.

The profile least squares estimation of β can be obtained by the least-squares approach and model (11),

β̂ =
[
XT(In − S)T(In − S)X

]−1
XT(In − S)T(In − S)Y, (12)

Furthermore, we define the final estimators of f and g as

f̂ = W1(Y − Xβ̂), ĝ = W2(Y − Xβ̂). (13)

By (12) and (13), we have

Ŷ = Xβ̂ + f̂ + ĝ = Xβ̂ + S(Y − Xβ̂) = LY and ε̂ = Y − Ŷ = (In − L)Y, (14)

with Ŷ = (ŷ1, ŷ2, · · · , ŷn)T, and ε̂ = (ε̂1, ε̂2, · · · , ε̂n)T, L = S + X̄[X̄TX̄]−1X̄T(In − S), and X̄ = (In − S)X.

According to the result in Hastie and Tibishrani (1990, Section 3.4.3), we can use the Cross-Validation (CV) technique to
choose bandwidth. The bandwidth is chosen to minimize the expression

CV(h) =

n∑
i=1

(
ε̂i

1 − lii

)2

,

where h = (h1, h2)T, ε̂i and lii (i = 1, 2, · · · , n) are respectively the residuals and the diagonal elements of the matrix L
which are shown in (14).

3. Hypothesis Tests

Based on the estimation method described in the previous section, we propose two hypothesis tests. The first one is for
general hypothesis testing of regression parameters, and the second one is for testing the nonparametric functions.

3.1 Testing for the Parametric Components

we consider the following linear hypothesis

H0 : Aβ = 0 VS H1 : Aβ , 0, (15)

where A is a k × p matrix of known constants and 0 is a k−vector of zero. We shall also assume that rank(A) = k.

Different to the generalized likelihood ratio test of Wei and Liu (2012), we will develop a generalized F-test statistic for
the testing problem (15). To construct the test statistic, we first estimate model (2) under the null hypothesis Aβ = 0.
Applying the Lagrange multiplier technique to linear model (11), the restricted profile least-squares estimator of β is
obtained as

β̂r = β̂ − (X̄TX̄)−1AT
[
A(X̄TX̄)−1AT

]−1
Aβ̂. (16)

Moreover, the restricted estimator of f and g can be defined as

f̂r = W1(Y − Xβ̂r), ĝr = W2(Y − Xβ̂r), (17)

Therefore, we can get the residual sum of squares under H0 as

RSS(H0) = (Y − Xβ̂r − fr − gr)T(Y − Xβ̂r − fr − gr). (18)
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On the other hand, based on the equation (14), the residual sum of squares under the alternative hypothesis is

RSS(H1) = (Y − Ŷ)T(Y − Ŷ) = YT(I − L)T(I − L)Y = YTM1Y, (19)

where M1 = (I − L)T(I − L).

By simple calculation, we have
RSS(H0) − RSS(H1) = YTM0Y, (20)

where M0 = (I − S)TX̄
[
X̄TX̄

]−1
AT

[
A(X̄TX̄)−1AT

]−1
A[X̄TX̄]−1X̄T(I − S).

It is obviously that, if H0 is true, there will be little difference between RSS(H0) and RSS(H1). Under the alternative
hypothesis, there should be significant difference between RSS(H0) and RSS(H1), and RSS(H1) should become system-
atically larger than RSS(H0). Using this fact, we can construct a generalized F test statistic as

F1 =
[RSS(H0) − RSS(H1)] /ν1

RSS(H1)/δ1
=

YTM0Y/ν1

YTM1Y/δ1
. (21)

where ν1 = tr(M0), δ1 = tr(M1).

It is obviously that M0 and M1 are not symmetric and idempotent matrix, so the statistical distribution of the test statistic
F1 is more complicated. However, By the result of Cleveland and Devlin (1988), if the model error is normal distribution,
the null distribution of the test statistic F1 can be approximated by an F− distribution with degrees of freedom (r1, r2),
where r1 = ν2

1/ν2, r2 = δ2
1/δ2, ν2 = tr(M2

0), δ2 = tr(M2
1). The application of this approximate procedure can be found in

Leung et al. (2000a, 2000b) and Fotheringham et al. (2002).

3.2 Testing for the Existence of Spatial Effects

For the semiparametric spatial additive model (2), an important question is to test the existence of spatial effects. This
leads to the following testing problem

H0 : f (ui) = g(vi) = 0, i = 1, 2, · · · , n.

If the null hypothesis H0 is true, model (2.1) is turned as the following standard linear regression model

Y = Xβ + ε. (22)

Then, the residual sum of squares under H0 based on the least-squares approach is

RSS(H0) = YT[In − X(XTX)−1XT]Y = YTN0Y, (23)

with N0 = In −X(XTX)−1XT. On the other hand, by (19), the residual sum of squares under the alternative hypothesis H1
is YTM1Y. Similar to the construction of F1, we define the following test statistic as

F2 =
[RSS(H0) − RSS(H1)] /τ1

RSS(H1)/δ1
=

YT (N0 −M1) Y/τ1

YTM1Y/δ1
. (24)

where τ1 = tr(N0 −M1).

Then, according to Cleveland and Devlin (1988), we know that the null distribution of test statistic F2 can be approximated
by an F− distribution with degrees of freedom (r∗1, r2), where r∗1 = τ2

1/τ2, r2 = δ2
1/δ2, τ2 = tr[(N0 −M1)2], δ2 = tr(M2

1).

4. Variable Selection by ALASSO Method

As well as other type regression models, an important problem in using the model (2) is variable selection. In practice,
many variables can be introduced to the initial analysis. Deciding which covariates to be kept in the final statistical model
has always been a tricky task for data analysis. For the standard linear regression model, stepwise regression method can
be applied directly by statistical software. However, traditional variable selection methods suffer from several drawbacks,
the most severe one of which is the lack of stability as pointed out by Breiman (1996). To solve this problem, some
penalized methods for significant variable selection have been proposed in the last decades. Examples include the bridge
regression of Frank and Friedman (1993), the least absolute shrinkage and selection operator (LASSO) of Tibshirani
(1996), the smoothly clipped absolute deviation (SCAD) of Fan and Li (2001), the elastic net penalty of Zou and Hastie
(2006) and the adaptive Lasso (ALASSO) of Zou (2006). For model (2), Liu et al. (2011) developed a variable selection
procedure to identify significant linear components using the SCAD based on the polynomial splines method. In the
following, we consider the problem of simultaneous variable selection and estimation in model (2) based on the ALASSO
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method. Firstly, according to Tibshirani (1996), the Lasso estimator of the coefficient β in model (2) is obtained by
minimizing the residual sum of squares:

n∑
i=1

[
yi − xT

i β − f (ui) − g(vi)
]2

(25)

with respect to β subject to the constraint
n∑

j=1
β j ≤ s, where s is a tuning parameter. Equivalently, the Lasso estimator of β

can be defined as

βLasso = arg min
β

Q(β) =

n∑
i=1

[
yi − xT

i β − f (ui) − g(vi)
]2

+ λ

p∑
j=1

|β j|, (26)

where λ is a tuning parameter depending on s. The purpose of penalty λ
∑p

j=1 |β j| is to shrink some of the coefficients
to exactly zero. This makes the LASSO a simultaneous estimation and variable selection procedure. To eliminate the
unknown coefficient functions f̂(·) and ĝ(·) in Q(β), we replace f (ui) and g(vi) in (26) by f̂ (ui) and ĝ(vi) which were
defined in (2.7) respectively, then we can obtain

βLasso = arg min
β

Q(β) = (Ȳ − X̄β)T(Ȳ − X̄β) + λ

p∑
j=1

|β j|. (27)

As noted by Zou (2006), the Lasso estimator can not attain the oracle property. To solve this problem, following Zou
(2006), the ALASSO estimator of β can be defined as

β̂ALasso = arg min
β

(Ȳ − X̄β)T(Ȳ − X̄β) + λ

p∑
j=1

|β j|

|β̃ j|
γ
,

 (28)

where β̃ = (β̃1, β̃2, · · · , β̃p)T is a consistent estimator of β, γ > 0 is constant. One possible choice for β̃ is the profile
least-squares estimator β̂ in (12). The LARS algorithm based on R package can be used to obtain β̂ALasso.

5. Simulation Studies

In this section, some simulations are conducted to examine the performance of the proposed procedures.

5.1 Spatial Layout and Design of the Experiments

In spatial analysis, a regular lattice has quite a strong background in applications. In our simulations, the observations
are collected from a uniform, two-dimensional grid consisting of m × m lattice points with unit distance between any
two neighboring points along the horizontal and vertical axes. These m2 points are arranged in an orthogonal coordinate
system in such a way that the spatial coordinates (ui, vi) for observing the data are

(ui, vi) =

(
mod(i − 1,m),

[
i − 1

m

])
, i = 1, 2, · · · ,m2,

where mod(i − 1,m) is the remainder of i − 1 divided by m and [ i−1
m ] is the integer part of number i−1

m .

The data are generated from the following semiparametric spatial additive model

yi = f (ui) + g(vi) + β1xi1 + β2xi2 + εi, i = 1, 2, · · · ,m2,

with xi1 ∼ N(0, 1), xi2 ∼ U(−2, 2), the following three type models are considered. Model 1 and Model 2 are true spatial
additive models, while the Model 3 is not a true additive structure.

Model 1 : f (ui) = ui, g(vi) = 1 + 2vi;
Model 2 : f (ui) = cos

(
2πui
m−1

)
, g(vi) = 0;

Model 3 : f (ui) + g(vi) = 3
m−1

√(
m−1

2 −
∣∣∣m−1

2 − ui

∣∣∣) (m−1
2 −

∣∣∣m−1
2 − vi

∣∣∣).
To gain an idea of the effect of the distribution of the error on our results, we take the following four different types of
the error distribution whose scales are so adjusted that they all have a common variance σ2 = 0.25, (1)εi ∼ N(0, 0.52),
(2)εi ∼ U(−

√
3/2,

√
3/2), (3) εi ∼

1
8χ

2
8 − 1, (4)εi ∼

√
3/4t(8). The Epanechnikov kernel K(x) = 0.75(1 − x2)I|x|≤1 is used

in our simulation. Furthermore, we use the CV technique of Section 2 to choose the bandwidths.
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5.2 The Finite Sample Performance of the Profile Least-Squares Estimation

Let β1 = 1, β2 = 2, sample size m = 8, 10, 12 , for each setting, simulation were repeated N = 1000 times. By the profile
least-squares approach in Section 2, we can obtain the estimators of β1 and β2. we asses the performance of the estimators
based on sample mean (Mean), sample standard deviation (SD) and sample mean squared error (MSE). The simulation
results are presented in Table 1-3. We can find that all the estimators of the parametric components are close to the true
value. As the sample size increases, the biases, sample standard deviation and sample mean squared error of estimators
decrease.

Table 1. Finite Sample Performance of the Profile Least-squares Estimator of Model 1

β̂1 β̂2
Error m Mean SD MSE Mean SD MSE

N(0, 0.52) 8 1.0014 0.0645 0.0042 2.0008 0.0554 0.0031
10 0.9990 0.0498 0.0025 2.0028 0.0450 0.0020
15 0.9997 0.0335 0.0011 2.0003 0.0289 0.0008

U(−
√

3
2 ,

√
3

2 ) 8 1.0003 0.0663 0.0044 1.9992 0.0576 0.0033
10 1.0018 0.0514 0.0026 1.9985 0.0439 0.0019
15 1.0001 0.0333 0.0011 2.0012 0.0293 0.0009

1
8χ

2
8 − 1 8 0.9949 0.0678 0.0046 2.0005 0.0557 0.0031

10 0.9992 0.0514 0.0026 2.0017 0.0429 0.0018
15 0.9994 0.0355 0.0013 2.0018 0.0297 0.0009

√
3

4 t(8) 8 0.9987 0.0657 0.0043 1.9963 0.0567 0.0032
10 0.9975 0.0511 0.0026 1.9990 0.0445 0.0020
15 0.9999 0.0342 0.0012 2.0002 0.0284 0.0008

Table 2. Finite Sample Performance of the Profile Least-squares Estimator of Model 2

β̂1 β̂2
Error m Mean SD MSE Mean SD MSE

N(0, 0.52) 8 0.9997 0.0702 0.0049 1.9973 0.0583 0.0034
10 1.0012 0.0547 0.0030 1.9982 0.0457 0.0021
15 1.0018 0.0351 0.0012 2.0000 0.0298 0.0009

U(−
√

3
2 ,

√
3

2 ) 8 0.9999 0.0685 0.0047 2.0010 0.0591 0.0035
10 1.0034 0.0531 0.0028 2.0008 0.0462 0.0021
15 1.0023 0.0351 0.0012 1.9994 0.0308 0.0010

1
8χ

2
8 − 1 8 1.0026 0.0687 0.0047 2.0014 0.0616 0.0038

10 0.9996 0.0530 0.0028 2.0007 0.0461 0.0021
15 1.0001 0.0362 0.0013 2.0022 0.0304 0.0009

√
3

4 t(8) 8 1.0012 0.0697 0.0049 2.0008 0.0593 0.0035
10 1.0003 0.0543 0.0029 1.9993 0.0472 0.0022
15 0.9993 0.0342 0.0012 2.0002 0.0297 0.0009

Table 3. Finite Sample Performance of the Profile Least-squares Estimator of Model 3

β̂1 β̂2
Error m Mean SD MSE Mean SD MSE

N(0, 0.52) 8 1.0016 0.0753 0.0057 2.0001 0.0643 0.0041
10 0.9971 0.0575 0.0033 2.0029 0.0474 0.0022
15 1.0020 0.0347 0.0012 1.9996 0.0310 0.0010

U(−
√

3
2 ,

√
3

2 ) 8 1.0045 0.0740 0.0055 2.0009 0.0619 0.0038
10 0.9994 0.0563 0.0032 2.0017 0.0473 0.0022
15 1.0038 0.0353 0.0013 2.0004 0.0309 0.0010

1
8χ

2
8 − 1 8 0.9950 0.0740 0.0055 1.9995 0.0616 0.0038

10 0.9964 0.0545 0.0030 2.0040 0.0465 0.0022
15 1.0002 0.0367 0.0013 2.0014 0.0319 0.0010

√
3

4 t(8) 8 1.0028 0.0719 0.0052 1.9998 0.0635 0.0040
10 0.9962 0.0574 0.0033 1.9990 0.0493 0.0024
15 0.9989 0.0369 0.0014 2.0019 0.0316 0.0010

6



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 12, No. 2; 2020

5.3 Performance of the Proposed Test Statistic F1

To study the finite sample performance of the test statistic F1 in Section 3.1, for models 1-3, we consider the following
testing problem

H0 : β1 − β2 = 0 VS H1 : β1 − β2 = c.

where c = 0,±0.2,±0.4,±0.6,±0.8 respectively, and β1 = 1, β2 = 1 − c. For each given value of c and each type of the
error distribution, 1000 replications with m = 10 were run and the rejection rate under the significance level α = 0.05 was
computed as the simulated power of our proposed test procedure. The results are shown in Table 4-6. We can see that
the rejection frequencies (estimated sizes) under H0 are all reasonably close to the corresponding significance level 0.05.
Under the alternative hypothesis, the rejection rate seems very robust to the variation of the type of error distribution, and
increases rapidly as the alternative hypothesis deviates from the null hypothesis.

Table 4. The Rejection frequencies of the test statistic F1 of Model 1

c Error Distribution
Value N(0, 0.52) U(−

√
3/2,

√
3/2) 1

8χ
2
8 − 1

√
3

4 t(8)
0.0 0.059 0.034 0.059 0.063
-0.2 0.291 0.331 0.319 0.323
0.2 0.340 0.311 0.312 0.329
-0.4 0.839 0.862 0.831 0.807
0.4 0.832 0.816 0.831 0.829
-0.6 0.993 0.991 0.994 0.982
0.6 0.985 0.994 0.988 0.990
-0.8 0.999 1.000 0.999 1.000
0.8 1.000 1.000 0.998 1.000

Table 5. The Rejection frequencies of the test statistic F1 of Model 2

c Error Distribution
Value N(0, 0.52) U(−

√
3/2,

√
3/2) 1

8χ
2
8 − 1

√
3

4 t(8)
0.0 0.052 0.039 0.039 0.049
-0.2 0.297 0.314 0.259 0.304
0.2 0.275 0.286 0.285 0.290
-0.4 0.774 0.802 0.775 0.803
0.4 0.797 0.811 0.792 0.791
-0.6 0.985 0.993 0.982 0.985
0.6 0.982 0.993 0.988 0.984
-0.8 0.999 1.000 1.000 0.999
0.8 1.000 1.000 0.998 0.999

Table 6. The Rejection frequencies of the test statistic F1 of Model 3

c Error Distribution
Value N(0, 0.52) U(−

√
3/2,

√
3/2) 1

8χ
2
8 − 1

√
3

4 t(8)
0.0 0.044 0.055 0.057 0.052
-0.2 0.287 0.290 0.267 0.292
0.2 0.279 0.272 0.270 0.288
-0.4 0.764 0.782 0.772 0.780
0.4 0.775 0.769 0.781 0.780
-0.6 0.983 0.981 0.979 0.973
0.6 0.982 0.976 0.978 0.975
-0.8 0.999 1.000 1.000 1.000
0.8 0.998 1.000 0.999 0.998
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5.4 Performance of the Proposed Test Statistic F2

To study the finite sample performance of the test statistic F2 in Section 3.2, we consider the testing problem H0 : f (ui) =

g(vi) = 0 for the following models

Model 4 : f (ui) = cui, g(vi) = dvi;
Model 5 : f (ui) = c cos

(
2πui
m−1

)
, g(vi) = 0;

Model 6 : f (ui) + g(vi) = c 3
m−1

√(
m−1

2 −
∣∣∣m−1

2 − ui

∣∣∣) (m−1
2 −

∣∣∣m−1
2 − vi

∣∣∣).
Take (c, d) = (0, 0), (0, 0.1), (−0.1, 0), (0.1, 0.1), (0,−0.2), (0.2, 0), (0.2, 0.2) in model 4, and c = 0,±0.1,±0.2,±0.3,±0.5,±0.6
in model 5 and model 6. In addition, 1000 realizations were generated with m = 10 to calculate the size and power of F2,
results are reported in Table 4-6. We can see that the rejection frequencies (estimated sizes) under H0 are all close to the
nominal level 0.05. On the other hand, the rejection rate increases rapidly as the alternative hypothesis deviates from the
null hypothesis.

Table 7. The Rejection frequencies of the test statistic F2 of Model 4

(c,d) Error Distribution
Value N(0, 0.52) U(−

√
3/2,

√
3/2) 1

8χ
2
8 − 1

√
3

4 t(8)
(0,0) 0.113 0.085 0.087 0.103

(0,0.1) 0.999 0.999 1.000 0.997
(-0.1,0) 0.998 1.000 1.000 0.999
(0.1,0.1) 1.000 1.000 1.000 1.000
(0,-0.2) 1.000 1.000 1.000 1.000
(0.2,0) 1.000 1.000 1.000 1.000

(0.2,0.2) 1.000 1.000 1.000 1.000

Table 8. The Rejection frequencies of the test statistic F2 of Model 5

c Error Distribution
Value N(0, 0.52) U(−

√
3/2,

√
3/2) 1

8χ
2
8 − 1

√
3

4 t(8)
0 0.094 0.082 0.091 0.113

0.1 0.211 0.204 0.201 0.193
-0.1 0.216 0.201 0.199 0.212
0.2 0.581 0.577 0.586 0.577
-0.2 0.591 0.563 0.584 0.604
0.3 0.909 0.933 0.922 0.925
-0.3 0.915 0.929 0.907 0.914
0.5 0.999 1.000 1.000 1.000
-0.5 1.000 1.000 1.000 0.999

Table 9. The Rejection frequencies of the test statistic F2 of Model 6

c Error Distribution
Value N(0, 0.52) U(−

√
3/2,

√
3/2) 1

8χ
2
8 − 1

√
3

4 t(8)
0 0.094 0.118 0.095 0.108

0.1 0.137 0.136 0.131 0.134
-0.1 0.123 0.117 0.117 0.118
0.2 0.238 0.196 0.238 0.271
-0.2 0.234 0.238 0.224 0.240
0.3 0.464 0.436 0.441 0.431
-0.3 0.460 0.440 0.447 0.452
0.5 0.889 0.878 0.871 0.888
-0.5 0.882 0.872 0.872 0.857
0.6 0.967 0.952 0.970 0.968
-0.6 0.966 0.962 0.965 0.968
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5.5 Finite Sample Performance of Variable Selection Procedure

In this section, we conduct the following numeric simulation to illustrate the proposed variable selection procedures. The
data are generated from the following semiparametric spatial additive regression model

yi = f (ui) + g(vi) + β1xi1 + β2xi2 + · · · + β8xi8 + εi, i = 1, 2, · · · ,m2,

where xik ∼ N(0, 1), k = 1, 2, · · · , 8, εi ∼ N(0, 0.25). Sample size n = 82, 102 and 152, respectively. Let (β1, β2, · · · , β8) =

(2, 1, 0, 0, 0, 0.5, 0, 0). Two cases for the spatial nonparametric functions are designed as

Model 7 : f (ui) = ui, g(vi) = 1 + 2vi;

Model 8 : f (ui) + g(vi) = 3
m−1

√(
m−1

2 −
∣∣∣m−1

2 − ui

∣∣∣) (m−1
2 −

∣∣∣m−1
2 − vi

∣∣∣), g(vi) = 0.

Model 7 is a true spatial additive model, the other model is not.

To assess the accuracy of the proposed estimators of the parametric components β = (β1, β2, · · · , β8)T, a criterion for
measuring the “goodness” of an estimator is needed. For this purpose, the mean squared errors (MSE) criterion, defined
as MSE = E‖β̂ − β‖2 is used. For comparison with the ALASSO, we also evaluate the MSE of the LASSO, ORACLE
and FULL model estimators. The ORACLE estimator is a profile least-squares estimator defined in (12) based on the
true model that contains none of the covariates with zero coefficients, while the FULL model estimator is a profile least-
squares estimator defined in (12) based on the full model that contains all of the covariates. The ORACLE estimator is
expected to perform best since it is based on the true model which is unknown in practice, and thus serves as a benchmark
for comparisons. All our simulations are based on 1000 replications. Table 10 reports the values of MSE of the various
estimators.

From Table 10, we can see that, Both Lasso and Adaptive Lasso procedures significantly improve the MSE over the full
model for both the model (7) and model (8). As expected, the ORACLE estimator performs best among all estimators.
Finally, the increase of sample size certainly improves the estimation accuracy of all estimating procedures.

Table 11 presents the average number of “correct” and “incorrect” zero estimates for the ALASSO and LASSO based
on 1000 replications. In Table 11, the columns labelled with “C” give the average number of the five zero coefficients
correctly set to 0, the columns labelled with “I” give the average number of the three nonzero coefficients incorrectly set
to 0. We observe from the table that in all cases the ALASSO provide more accurate number of correct zeros than does
the LASSO.

Table 10. MSE of estimators for β

Model 7 Model 8
Method n = 82 n = 102 n = 152 n = 82 n = 102 n = 152

ALASSO 0.0184 0.0112 0.0040 0.0224 0.0108 0.0048
LASSO 0.0320 0.0192 0.0080 0.0384 0.0224 0.0088

ORACLE 0.0135 0.0081 0.0036 0.0162 0.0096 0.0039
FULL 0.0397 0.0240 0.0096 0.0464 0.0272 0.0104

Table 11. Average numbers of correct(C)and incorrect(I) zeros

Model 7 Model 8
n = 82 n = 102 n = 152 n = 82 n = 102 n = 152

ALASSO C 4.152 4.261 4.491 4.171 4.283 4.478
I 0 0 0 0 0 0

LASSO C 2.354 2.294 2.38 2.348 2.338 2.369
I 0 0 0 0 0 0

6. Real Data Analysis

We now illustrate the proposed testing procedure by analyzing the well-known Boston housing prices data. The depen-
dent variable is the log of the median value (in 1000 USD) of the owner-occupied homes in each of the census tracts.
Thirteen explanatory variables include levels of nitrogen oxides (NOX), average number of rooms (RM), proportion of
structures built before 1940 (AGE), black population proportion (B), lower status population proportion (LSTAT), crime
rate (CRIM), proportion of area zoned with large lots (ZN), proportion of nonretail business areas (INDUS), property tax
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rate (TAX), pupilteacher ratio (PTRATIO), location contiguous to the Charles River (CHAS), weighted distances to the
employment centers (DIS), and an index of accessibility (RAD).

To modelling the spatial effects more flexible, we use the following apply the semiparametric spatial additive model

yi = f (ui) + g(vi) +

13∑
j=1

β jxi j + β14uivi + εi, i = 1, 2, · · · , 506, (29)

We assume that both the response variable and covariates have been centered about their respective means. Applying
the profile least-squares approach of Section 2, both the ALASSO and LASSO procedures of Section 4 to estimate the
coefficients β j, j = 1, 2, · · · , 14, results are presented in Table 12.

From Table 12, we can see that higher CRIM, NOX2, DIS, TAX, PTRATIO, and LSTAT are all expected to lead to lower
housing prices. On the other hand, larger ZN, RM2, RAD and B are all expected to lead to higher housing prices. Overall,
these estimates are consistent with our expectations. ZN is found to be insignificant in determining housing prices by the
results of ALASSO.

Table 12. Estimates of the coefficients

PLS ALASSO LASSO
CRIM -0.0107 -0.0108 -0.0106

ZN 0.0005 0.0000 0.0005
INDUS 0.0015 -0.0009 0.0013
CHAS 0.0677 0.0715 0.0670
NOX2 -0.58732 -0.6170 -0.5814
RM2 0.0072 0.0071 0.0072
AGE -0.0008 -0.0003 -0.0008
DIS -0.08243 -0.0873 -0.0819

RAD 0.0161 0.01146 0.0158
TAX -0.0007 -0.0339 -0.0007

PTRATIO -0.0326 0.0002 -0.0324
B 0.0004 0.0003 0.0004

LSTAT -0.0279 -0.0290 -0.0279
LAT*LON -0.0337 -0.02843 -0.0317

7. Discussion

In this article, we propose a new semiparametric spatial additive model to incorporate spatial effects into regression
models. The spatial effects of latitude and longitude were modelled as the nonparametric smoothing functions. However,
their interaction effect was modelled as parametric structure. How to analyse the interaction effect by the nonparametric or
semiparametric method is an important problem. On the other hand, our study was focused only on spatial cross sectional
data. A natural extension is the following semiparameric spatio-temporal additive model by incorporating temporal effects
into the model (2),

yi = f (ui) + g(vi) + m(ti) + xT
i β + εi, i = 1, 2, · · · , n,

where m(·) is the unknown smooth functions of time. The estimation, testing and variable selection procedures of this
paper can be applied to this model, this is an important area of future research.
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