Fractional Strong Matching Preclusion of Split-Star Networks
- Ping Han
 - Yuzhi Xiao
 - Chengfu Ye
 - He Li
 
Abstract
The matching preclusion number of graph G is the minimum size of edges whose deletion leaves the resulting graph without a perfect matching or an almost perfect matching. Let F be an edge subset and F′ be a subset of edges and vertices of a graph G. If G − F and G − F′ have no fractional matching preclusion, then F is a fractional matching preclusion (FMP) set, and F ′is a fractional strong matching preclusion (FSMP) set of G. The FMP (FSMP) number of G is the minimum number of FMP (FSMP) set of G. In this paper, we study fractional matching preclusion number and fractional strong matching preclusion number of split-star networks. Moreover, We categorize all the optimal fractional strong matching preclusion sets of split-star networks.
-  Full Text: 
 PDF 
                            
                     - DOI:10.5539/jmr.v11n4p32
 
Index
- ACNP
 - Aerospace Database
 - BASE (Bielefeld Academic Search Engine)
 - Civil Engineering Abstracts
 - CNKI Scholar
 - DTU Library
 - EconPapers
 - Elektronische Zeitschriftenbibliothek (EZB)
 - EuroPub Database
 - Google Scholar
 - Harvard Library
 - IDEAS
 - Infotrieve
 - JournalTOCs
 - MathGuide
 - MathSciNet
 - Open policy finder
 - RePEc
 - ResearchGate
 - Scilit
 - Technische Informationsbibliothek (TIB)
 - The Keepers Registry
 - UCR Library
 - Universe Digital Library
 - WorldCat
 
Contact
- Sophia WangEditorial Assistant
 - jmr@ccsenet.org