Fractional Strong Matching Preclusion of Split-Star Networks
- Ping Han
- Yuzhi Xiao
- Chengfu Ye
- He Li
Abstract
The matching preclusion number of graph G is the minimum size of edges whose deletion leaves the resulting graph without a perfect matching or an almost perfect matching. Let F be an edge subset and F′ be a subset of edges and vertices of a graph G. If G − F and G − F′ have no fractional matching preclusion, then F is a fractional matching preclusion (FMP) set, and F ′is a fractional strong matching preclusion (FSMP) set of G. The FMP (FSMP) number of G is the minimum number of FMP (FSMP) set of G. In this paper, we study fractional matching preclusion number and fractional strong matching preclusion number of split-star networks. Moreover, We categorize all the optimal fractional strong matching preclusion sets of split-star networks.
- Full Text: PDF
- DOI:10.5539/jmr.v11n4p32
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org