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Abstract

The matching preclusion number of graph G is the minimum size of edges whose deletion leaves the resulting graph
without a perfect matching or an almost perfect matching. Let F be an edge subset and F

′
be a subset of edges and

vertices of a graph G. If G − F and G − F
′

have no fractional matching preclusion, then F is a fractional matching
preclusion (FMP) set, and F

′
is a fractional strong matching preclusion (FSMP) set of G. The FMP (FSMP) number of

G is the minimum number of FMP (FSMP) set of G. In this paper, we study fractional matching preclusion number and
fractional strong matching preclusion number of split-star networks. Moreover, We categorize all the optimal fractional
strong matching preclusion sets of split-star networks.

Keywords: perfect matching, fractional matching preclusion number, fractional strong matching preclusion number,
split-star networks
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1. Introduction

We often write V(G) and E(G) are vertex set and edge set, respectively. Each edge of G is usually denoted by uv or vu. If
e = uv is an edge of G, then e is said to join u and v. The minimum degree of G is denoted by δ(G). A path is even path if
it has even number of vertices, otherwise, is odd path. A cycle is even cycle if it has even number of vertices, otherwise,
is odd cycle. A cycle (respectively, path) in G that passes through each vertex of G exactly once is called a Hamiltonian
cycle (respectively, Hamiltonian path) of G. A graph that contains a Hamiltonian cycle is itself called Hamiltonian. A
graph is Hamiltonian connected if there is a Hamiltonian path between every pair of vertices. Induced subgraph of graph
G is denoted by G[S ], where S is nonempty subset of V(G) or E(G). A subgraph H of a graph G is called an induced
subgraph if there is nonempty subset S of V(G) or E(G) such that H = G[S ]. The complete graph of order n is denoted
by Kn.

1.1 (Strong) Matching Preclusion

A perfect matching in a graph is a set of edges such that every vertex is incident with exactly one edge in this set. An almost
perfect matching is a set of edges such that every vertex, except one, is incident with exactly one edge in this set, and the
exceptional vertex is incident with none. A matching preclusion set of a graph G is a set of edges whose deletion leaves the
resulting graph with neither perfect matchings nor almost perfect matchings. The matching preclusion number of a graph
G, denoted by mp(G), is the size of a smallest matching preclusion set of G. Any such optimal set is called an optimal
matching preclusion set. The concept of matching preclusion was introduced by Birgham et al. (Birgham, Harry, Biolin,
& Yellen, 2005) and further studied in (Cheng, Lesniak, Lipman, & Lipták, 2008; Cheng, Lesniak, Lipman, Lipták, 2007;
Wang, Mao, Cheng, & Zou, 2019; Wang, Melekian, Cheng, & Mao, 2019), with special attention to interconnection
networks. For graphs with an even number of vertices, an obvious matching preclusion set is the set of edges incident
with a single vertex; such a set is called a trivial matching preclusion set. A graph G satisfying mp(G) = δ(G) is called
maximally matched, and in a maximally matched graph some trival matching preclusion sets are optimal. If every optimal
matching preclusion set is trivial, then the graph G is called super matched. Being super matched is a desirable property
for any real-life networks, as it is unlikely that in the event of random edge failure, every edge incident with some fixed
vertex fails.

A set F of edges and vertices of G is a strong matching preclusion set (SMP set for short) if G − F has neither perfect
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Figure 1. The generator graph for split-stars

matchings nor almost perfect matchings. The strong matching preclusion number (SMP number for short) of G, denoted
by smp(G), is the minimum number of SMP sets of G. A SMP set is optimal if |F| = smp(G). The problem of strong
matching preclusion set was proposed by Park and Ihm (Park & Ihm) and further studied by (Mao, Wang, Cheng, &
Melekian, 2018), with special attention to interconnection networks. We remark that if F is an optimal strong matching
preclusion set, then we may assume that no edge in F is incident with a vertex in F. It follows from the definitions of
mp(G) and smp(G) that smp(G) ≤ mp(G) ≤ δ(G). If smp(G) = δ(G), then G is strongly maximally matched. In addition,
for any strong matching preclusion set F, if G − F has isolated vertices, then G is strongly super matched and we say F
to be a trivial strong matching preclusion set, otherwise F is nontrivial.

1.2 Fractional(strong) Matching Preclusion

A standard way to consider matchings in polyhedral combinatorics is as follows. Given a set of edges S of G, we define
f S to be the indicator function of S , that is, f S : E(G) −→ {0, 1} such that fS (e) = 1 if and only if e ∈ S . Let X be a set of
vertices of G. We denote τ(X) to be the set of edges with exactly one end in X. If X = {v}, we write τ(v) instead of τ({v}).
Clearly, f M : E(G) −→ {0, 1} is the indicator function of the perfect matching M if

∑
e∈τ(v) f M(e) = 1 for each vertex v

of G, and f M : E(G) −→ {0, 1} is the indicator function of the almost perfect matching M if
∑

e∈τ(v) f M(e) = 1 for each
vertex v of G, except one vertex say v, and

∑
e∈τ(v) f M(e) = 0. In fact, f M(E(G)) = |V(G)|/2 if M is a perfect matching

and f M(E(G)) = (|V(G) − 1)|/2 if M is an almost perfect matching. A relaxation from an integer set to a continuous set
is to replace the codomain of the indicator function from {0, 1} to the interval [0, 1]. Let f : E(G) −→ [0, 1]. Naturally,
we call f a fractional matching if

∑
e∈τ(v) f (e) ≤ 1 for each vertex v of G. Similarly, f is a fractional perfect matching if∑

e∈τ(v) f (e) = 1 for each vertex v of G. Thus, if f is a fractional perfect matching, then

f (E(G)) =
∑

e∈E(G)

f (e) =
1
2

∑
v∈V(G)

∑
e∼v

f (e) =
|V(G)|

2
.

Recently, Y. Liu and W. Liu (Y. Liu & W. Liu, 2016) introduced such a generalization by precluding fractional perfect
matchings only. An edge subset F of G is a fractional matching preclusion set (FMP set for short) if G − F has no
fractional perfect matchings. In addition, the fractional matching preclusion number (FMP number for short) of G,
denoted by f mp(G), is the minimum size of FMP sets of G, that is, f mp(G) = min{|F| : F is an FMP set}. Clearly,

f mp(G) ≤ δ(G),

and by the definition of f mp(G), when |V(G)| is even,

mp(G) ≤ f mp(G).

If f mp(G) = δ(G), then G is fractional maximally matched. If G − F has isolated vertices for every optimal fractional
matching preclusion set F, then G is fractional super matched.

Liu and Liu (Y. Liu & W. Liu, 2016) also introduced a generalization of strong matching preclusion under the same
assumption by precluding fractional perfect matchings only. A set F of edges and vertices of G is a fractional strong
matching preclusion set (FSMP set for short) if G−F has no fractional perfect matchings. The fractional strong matching
preclusion number (FSMP number for short) of G, denoted by f smp(G), is the minimum size of FSMP sets of G, that is,
f smp(G)=min{|F|: F is an FSMP set}. Since a fractional matching preclusion set is a fractional strong matching preclusion
set, it is clear that

f smp(G) ≤ f mp(G) ≤ δ(G).
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If f smp(G) = δ(G), then G is fractional strongly maximally matched. In addition, for any fractional strong matching
preclusion set F, if G − F has isolated vertices, then G is fractional strongly super matched and we say F to be a trivial
fractional strong matching preclusion set, otherwise F is nontrivial. For more details about this concept, we refer to the
papers (Y. Liu & W. Liu, 2016; Ma, Mao, Cheng, & Wang, 2018).

1.3 Split-Star Networks S 2
n

The split-star network as a variant of the star-graph network. In particular, a split-star network can be decomposed into
two disjoint alternating group networks. Both the star-graph and alternating group networks are special members of the
family of generalized arrangement graphs (Day & Tripathi, 1992; Jwo, Lakshmivarahan, & Dhall, 1993). Therefore, the
split-star network inherits the topological properties of the alternating group networks and arrangement graphs, and can
be a good candidate for a multiprocessor interconnection.

In this paper, we study fractional strong matching preclusion problem for the split-star networks. We first give the defi-
nition of the split-star S 2

n introduced in (Cheng, Lesniak, & Park, 2001). The vertex set is the set of the n! permutations
on {1, 2, · · · , n}. To describe the adjacency, it is convenient to look at the generator graph. Consider the generator graph
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in Figure 1 (a star with the root split). Two permutations are adjacent if one can be obtained from the other by either a
2-exchange or a 3-rotation. A 2-exchange interchanges the symbols in positions 1 and 2 (that is, corresponding to the
center edge (1, 2) in Figure 1). A 3-rotation rotates the symbols in the positions labelled by the vertices of a triangle,
that is, the triangle with vertices 1, 2 and k for some k ∈ {3, 4, · · · , n}. The rotation can be forward or reverse. So there
are two 3-rotations for each k. Thus, S 2

n is a (2n − 3)-regular graph with n! vertices. Throughout this paper, we use
[a1, a2, a3, · · · , an] to denote a permutation written as a rearrangement of objects, that is, ai in position i. However, for
notational simplicity in pictures, this permutation is written as a1a2a3 · · · an.

Let Vn:i
n be the set of all vertices in S 2

n with the nth position having value i, i.e., Vn:i
n = {p|p = xx · · · x︸  ︷︷  ︸

n−1

i, x is a don
′
t care

symbol}. The set {Vn:i
n |1 ≤ i ≤ n} forms a partition of V(S 2

n). Let S 2:i
n−1 denote the subgraph of S 2

n induced by Vn:i
n , i.e.,

S 2:i
n−1 = S 2

n[Vn:i
n ], it is easy to know that S 2:i

n−1 is isomorphic to S 2
n−1. Every vertex v in S 2:i

n−1 has exactly two neighbors
outside of S 2:i

n−1; moreover these two neighbors belong to different S 2: j
n−1s, where j , i. We call these neighbors as the

external-neighbors of v. We call these edges, whose end-vertices belong to different subgraphs, as cross edges. For any
two vertices in the same subgraph S 2:i

n−1, their external-neighbors in other subgraphs are different. For example, a partition
of S 2

4 is shown in Figure 2. Let S 2
n,E be a subgraph of S 2

n induced by the set of even permutations. In other words, all
even permutations form the vertex-set of S 2

n,E , in which the adjacency rule is precisely the 3-rotation. We know that S 2
n,E

is the alternating group graph An (Jwo, Lakshmivarahan, Dhall, 1993). Let S 2
n,O be a subgraph of S 2

n induced by the set
of all odd permutations, in which the adjacency rule is precisely the 3-rotation. We have that S 2

n,O is isomorphic to An

and S 2
n,O is isomorphic to S 2

n,E via the 2-exchange ϕ(a1a2a3 · · · an) = a2a1a3 · · · an. Hence, there are n!
2 matching edges

between S 2
n,E and S 2

n,O , i.e., there is one to one correspondence between S 2
n,E and S 2

n,O. Indeed, the split-star network S 2
n

is introduced in (Cheng et al., 2001) which is the companion graph of An. In this paper, we study the fractional strong
matching preclusion problem for the split-star graph. Because deletion of vertices is allowed, the analysis will be more
involved than the analysis of the correspond matching preclusion problem.

1.4 Related Results

We summarize some knowledge which will be needed later.

Proposition 1 (Scheinerman & Ullman, 1997) The graph G has a fractional perfect matching if and only if there is a
partition {V1,V2, · · · ,Vn} of the vertex set of V(G) such that, for each i, the graph G[Vi] is either K2 or a Hamiltonian
graph on odd number of vertices.

lemma 1 (Ma, Mao, Cheng, & Melekian, 2018.) Let G be fractional strongly super matched graph with δ(G) ≥ 2. If F
is a trivial FSMP set of G and G − F has an isolated vertex v, then G − F − v has a fractional perfect matching.

Before we prove the fractional strong perfect matching preclusion results of S 2
n, now we need some preliminary results on

the perfect matching preclusion, strong perfect matching preclusion and Hamiltonian properties of graphs S 2
n and An.

Theorem 1 (Hsu, Li, Tan, & Hsu, 2004) Let n ≥ 4. Suppose F ⊆ V(An) ∪ E(An). If |F| ≤ 2n − 7, then An − F is
Hamiltonian connected; if |F| ≤ 2n − 6, then An − F is Hamiltonian.

Theorem 2 (Cheng, Lesniak, Lipman, & Lipták, 2008) Suppose n ≥ 4. Then mp(An) = 2n − 4 and mp(S 2
n) = 2n − 3.

Moreover, every optimal matching preclusion set is trivial.

Theorem 3 (Bonneville, Cheng, & Renzi, 2011) Let n ≥ 4. Then smp(An) = 2n − 4. Moreover An is super strongly
matched; that is, every optimal strong matching preclusion set of An is trivial.

Corollary 1 (Bonneville, Cheng, & Renzi, 2011) Let S 2
n be a split-star with n ≥ 4. Then S 2

n is maximally strongly
matched; that is, smp(S 2

n) = 2n − 3. Moreover, S 2
n is super strongly matched; that is, every optimal strong matching

preclusion set of S 2
n is trivial.

lemma 2 (Cheng & Siddiqui, 2016) Suppose G has an almost perfect matching M missing v. If v is not an isolated vertex
in G, then G has an almost perfect matching missing a vertex other than v.

2. Main Results

Since S 2
n has an even number of vertices and is (2n − 3)-regular, the next result follows by Theorem 2 and mp(S 2

n) ≤
f mp(S 2

n) ≤ δ(S 2
n).

Theorem 4 Let n ≥ 4. Then f mp(S 2
n) = 2n − 3. Moreover, S 2

n is fractional super matched.

We now turn our attention to S 2
n. Note that S 2:i

n−1 is isomorphic to S 2
n−1, where 1 ≤ i ≤ n. it is easy to know that S 2

n can be
decomposed into n copies, i.e., S 2:1

n−1, S 2:2
n−1,· · · , S 2:n

n−1. We will prove a more general result.

35



http://jmr.ccsenet.org Journal of Mathematics Research Vol. 11, No. 4; 2019

Theorem 5 If S 2
n−1 is fractional strongly super matched for n ≥ 5, then S 2

n is fractional strongly super matched.

Proof. Let S 2
n be a graph that consists of G1, G2,· · · , Gn, where G1, G2,· · · , Gn are copies of S 2

n−1. Let F ⊆ E(S 2
n)∪V(S 2

n)
with |F| ≤ 2n − 3. Let Fi = Gi ∩ F, where 1 ≤ i ≤ n. For notational convenience, we assume |Fi| ≤ |F1| for 2 ≤ i ≤ n. We
will show that S 2

n − F satisfy one of the following: (1) S 2
n − F has a fractional perfect matching; (2) S 2

n − F has an isolated
vertex such that F is trivial FSMP set. If (2) is true, then we are done. So we may assume that S 2

n − F has no isolated
vertices.

Case 1. |F1| = 2n − 3. Clearly, |Fi| = 0 for each Fi, where 2 ≤ i ≤ n. Let F
′

1 = F1 − {α, β}, where {α, β} ⊆ F1. Since G1 is
fractional strongly super matched, G1 − F

′

1 has a fractional perfect matching or F
′

1 is a trivial FSMP set of G1. If G1 − F
′

1
has a fractional perfect matching, we consider to delete elements α and β from G1 − F

′

1 and construct a fractional perfect
matching of S 2

n − F. If F
′

1 is a trivial FSMP set of G1 and v is an isolated vertex of G1 − F
′

1, then G
′

1 = G1 − F
′

1 − {v}
has fractional perfect matching by Lemma 1. Similarly, we consider to delete elements α, β and v from G1 − F

′

1 and
construct a fractional perfect matching of S 2

n−F. Compared with the case that F
′

1 is a trivial FSMP set of G1, the case that
G1 − F

′

1 has a fractional perfect matching is easy and clear to construct a fractional perfect matching of S 2
n − F. Therefore

we consider the difficult case that F
′

1 is a trivial FSMP set of G1. We can easily see that it is possible that v ∈ {α, β}. If
v ∈ {α, β}, we only consider to delete elements α and β from G1 − F

′

1 and this is easier to construct a fractional perfect
matching than deleting elements α, β and v from G1 − F

′

1. So we only consider the case deleting elements α, β and v from
G1 − F

′

1 in the following. Since G
′

1 has a fractional perfect matching, it follows from Proposition 1 that there is a partition
{V1,V2, · · · ,Vt} of the vertex set of V(G

′

1) such that, for each i, the graph G
′

1[Vi] is either graph K2 or a Hamiltonian
graph on odd number of vertices. To show that S 2

n − F has a fractional perfect matching, we consider the following cases
according to elements α and β.

Subcase 1.1. α and β are two vertices. If α and β are two vertices of K2 induced by Vi, note that there exists a partition
{V ′

1,V
′

2, · · · ,V
′

t−1} of the vertex set of V(G
′

1−{α, β}) such that, G
′

1−{α, β} has a fractional perfect matching f1 by Proposition
1. Let F

′

i = {v
′ } ∩ V(Gi) for 2 ≤ i ≤ n, where v

′
is external-neighbor of v. Since |F ′i | ≤ 1 and Gi is (2n − 5)-regular for

2 ≤ i ≤ n, Gi − F
′

i has a fractional perfect matching fi. Thus {(vv
′
)} and f1, f2, · · · , fn induce a fractional perfect matching

of S 2
n − F. If α is a vertex of K2 induced by Vi and β is a vertex of K2 induced by V j, where i , j, there exists a fractional

perfect matching f1 in G
′

1 − {α, β, γ, λ}, where γ is a neighbor of α in K2 induced by Vi and λ is a neighbor of β in K2
induced by V j. Since every vertex in G1 has exactly two external-neighbors in S 2

n − G1 and these two neighbors belong
to different Gi, where 2 ≤ i ≤ n, it follows that we may select an external-neighbor for each vertex from {γ, λ} such that
they are in different Gi’s. Let F

′

i = {γ
′
, λ
′
, v
′ } ∩ V(Gi) for 2 ≤ i ≤ n, where γ

′
, λ

′
and v

′
are external-neighbors of γ, λ

and v, respectively. Note that |F ′i | ≤ 2 and Gi is (2n − 5)-regular, so Gi − F
′

i has a fractional perfect matching fi, where
2 ≤ i ≤ n. Thus, {(γγ′ ), (λλ′), (vv

′
)} and f1, f2, · · · , fn induce a fractional perfect matching of S 2

n − F. If α and β are two
vertices of a Hamiltonian graph on odd number of vertices induced by Vi, then there is a fractional perfect matching f1
in G

′

1 − {α, β, γ} by Proposition 1, where γ is a neighbor of α in an odd path of G
′

1 − {α, β}. Let F
′

i = {γ
′
, v
′ } ∩ V(Gi) for

2 ≤ i ≤ n, where γ
′

and v
′

are external-neighbors of γ and v, respectively. Note that |F ′i | ≤ 2 and Gi is (2n − 5)-regular, so
Gi − F

′

i has a fractional perfect matching fi, where 2 ≤ i ≤ n. Hence, {(vv
′
), (γγ

′
)} and f1, f2, · · · , fn induce a fractional

perfect matching of S 2
n − F. If α and β are two vertices of two Hamiltonian graphs on odd number of vertices induced

by Vi and V j, respectively, where i , j, then there is a fractional perfect matching f1 in G1 − F1 − {v} by Lemma 1. Let
F
′

i = {v
′ } ∩ V(Gi) for 2 ≤ i ≤ n, where v

′
is external-neighbor of v. Since |F ′i | ≤ 1 and Gi is (2n − 3)-regular for 2 ≤ i ≤ n,

Gi −F
′

i has a fractional perfect matching fi. Thus, {(vv
′
)} and f1, f2, · · · , fn induce a fractional perfect matching of S 2

n −F.
If α is a vertex of K2 induced by Vi and β is a vertex of Hamiltonian graph on odd number of vertices induced by V j,
where i , j. There exists a fractional perfect matching f1 in G

′

1 − {α, β, γ}, where γ is neighbor of α in K2 induced by Vi.
Note that there are two vertices γ and v in G1 − F1 that are unmatched, so let F

′

i = {γ
′
, v
′ } ∩ V(Gi) for 2 ≤ i ≤ n, where

γ
′

and v
′

are external-neighbors of γ and v, respectively. Note that |F ′i | ≤ 2 and Gi is (2n − 5)-regular, so Gi − F
′

i has a
fractional perfect matching fi, where 2 ≤ i ≤ n. Thus, {(vv

′
), (γγ

′
)} and f1, f2, · · · , fn induce a fractional perfect matching

of S 2
n − F.

Subcase 1.2. α is a vertex and β is an edge. Let β = uw. Suppose α is a vertex of K2 induced by Vi and β is an edge
of K2 induced by Vi. Without loss of generality, we assume α = u. For i = 1, there is a fractional perfect matching
f1 in G

′

1 − {α, β,w} by Proposition 1. Note that there are two vertices w and v in G1 − F1 that are unmatched, so let
F
′

i = {w
′
, v
′ } ∩ V(Gi) for 2 ≤ i ≤ n, where w

′
and v

′
are external-neighbors of w and v, respectively. For 2 ≤ i ≤ n,

|F ′i | ≤ 2 and Gi is (2n − 5)-regular, so Gi − F
′

i has a fractional perfect matching fi. Hence, {(ww
′
), (vv

′
)} and f1, f2, · · · , fn

induce a fractional perfect matching of S 2
n − F. Suppose α is a vertex of K2 induced by Vi, and β is an edge of K2 induced

by V j, where i , j. Note that there exists a partition {V ′

1,V
′

2, · · · ,V
′

t−2} of the vertex set of V(G
′

1 − {α, β, γ, u,w}) such
that, there is a fractional perfect matching f1 in G

′

1 − {α, β, γ, u,w} by Proposition 1, where γ is a neighbor of α in K2
induced by Vi. Since every vertex in G1 has exactly two neighbors outside in S 2

n − G1; moreover, these two neighbors
belong to different Gi, where 2 ≤ i ≤ n, it follows that we may select an external-neighbor for each vertex from {γ, u,w}
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such that they are in different Gi’s. Note that there are four vertices γ, u, w and v in G1 − F1 that are unmatched, so let
F
′

i = {γ
′
, u
′
,w

′
, v
′ } ∩ V(Gi) for 2 ≤ i ≤ n, where γ

′
, u

′
, w

′
and v

′
are external-neighbors of γ, u, w and v, respectively.

For 2 ≤ i ≤ n, |F ′i | ≤ 2 and Gi is (2n − 5)-regular, so Gi − F
′

i has a fractional perfect matching fi for 2 ≤ i ≤ n. Hence,
{(γγ′), (uu

′
), (ww

′
), (vv

′
)} and f1, f2, · · · , fn induce a fractional perfect matching of S 2

n − F. Suppose vertex α and edge
β are of a Hamiltonian graph on odd number of vertices induced by Vi. There exists a fractional perfect matching f1
missing at most two vertices x and y in G

′

1 − {x, y, α, β}, where x and y are two vertices of a Hamiltonian graph on odd
number of vertices induced by Vi. We may select an external-neighbor for each vertex from {x, y} such that they are in
different Gi’s, where 2 ≤ i ≤ n. Let F

′

i = {x
′
, y
′
, v
′ } ∩ V(Gi) for 2 ≤ i ≤ n, where x

′
, y
′

and v
′

are external-neighbors of
x, y and v, respectively. For 2 ≤ i ≤ n, |F ′i | ≤ 2 and Gi is (2n − 5)-regular, so Gi − F

′

i has a fractional perfect matching
fi. Hence, {(xx

′
), (yy

′
), (vv

′
)} and f1, f2, · · · , fn induce a fractional perfect matching of S 2

n − F. Suppose α is a vertex of
K2 induced by Vi and β is an edge of a Hamiltonian graph on odd number of vertices induced by V j, where i , j. Note
that G

′

1 − {α, β, γ, u} has a fractional perfect matching f1, where γ is a neighbor of α in K2 induced by Vi and vertex u is
incident with β in the Hamiltonian graph on odd number of vertices induced by V j. Since every vertex in G1 has exactly
two neighbors outside in S 2

n −G1; moreover, these two neighbors belong to different Gi, where 2 ≤ i ≤ n, it follows that
we may select an external-neighbor for each vertex from {γ, u} such that they are in different Gi’s. Note that there are
three vertices γ, u and v in G1 − F1 that are unmatched, so let F

′

i = {γ
′
, u
′
, v
′ } ∩ V(Gi) for 2 ≤ i ≤ n, where γ

′
, u

′
and

v
′

are external-neighbors of γ, u and v, respectively. For 2 ≤ i ≤ n, |F ′i | ≤ 2 and Gi is (2n − 5)-regular, so Gi − F
′

i has a
fractional perfect matching fi. Thus, {(γγ′ ), (uu

′
), (vv

′
)} and f1, f2, · · · , fn induce a fractional perfect matching of S 2

n − F.
Suppose α is a vertex of a Hamiltonian graph on odd number of vertices induced by Vi and β is an edge of K2 induced
by V j, where i , j. Note that G

′

1 − {α, β, u,w} has a fractional perfect matching f1, where u and w are incident with β.
We may select an external-neighbor for each vertex from {u,w} such that they are in different Gi’s, where 2 ≤ i ≤ n.
Let F

′

i = {u
′
,w

′
, v
′ } ∩ V(Gi) for 2 ≤ i ≤ n, where u

′
, w

′
and v

′
are external-neighbors of u, w and v, respectively. For

2 ≤ i ≤ n, |F ′i | ≤ 2 and Gi is (2n− 5)-regular, so Gi − F
′

i has a fractional perfect matching fi. Thus, {(uu
′
), (ww

′
), (vv

′
)} and

f1, f2, · · · , fn induce a fractional perfect matching of S 2
n − F.

Subcase 1.3. α and β are two edges. Let α = xy and β = uw. Suppose α is an edge of K2 induced by Vi and β is an
edge of K2 induced by V j, where i , j. There is a fractional perfect matching f1 in G

′

1 − {α, β, x, y, u,w} by Proposition 1,
where x and y are incident with α, and u and w are incident with β. Every vertex in G1 has exactly two neighbors outside
in S 2

n −G1; moreover, these two neighbors belong to different Gi, where 2 ≤ i ≤ n. So we may select an external-neighbor
for each vertex from {x, y, u,w} such that they are in different Gi’s. Let F

′

i = {x
′
, y
′
, u
′
,w

′
, v
′ } ∩ V(Gi) for 2 ≤ i ≤ n,

where x
′
, y

′
, u

′
, w

′
and v

′
are external-neighbors of x, y, u, w and v, respectively. For 2 ≤ i ≤ n, since |F ′i | ≤ 2 and Gi

is (2n − 5)-regular, it follows that Gi − F
′

i has a fractional perfect matching fi. Therefore, {(xx
′
), (yy

′
), (uu

′
), (ww

′
), (vv

′
)}

and f1, f2, · · · , fn induce a fractional perfect matching of S 2
n − F. Suppose edge α and edge β are of a Hamiltonian graph

on odd number of vertices induced by Vi. There is a fractional perfect matching f1 in G
′

1 − {α, β} missing vertex k. Note
that there are two vertices k and v in G1 − F1 that are unmatched, so let F

′

i = {k
′
, v
′ } ∩ V(Gi) for 2 ≤ i ≤ n, where k

′
and

v
′

are external-neighbors of k and v, respectively. For 2 ≤ i ≤ n, |F ′i | ≤ 2 and Gi is (2n − 5)-regular. So Gi − F
′

i has a
fractional perfect matching fi for 2 ≤ i ≤ n. Thus, {(kk

′
), (vv

′
)} and f1, f2, · · · , fn induce a fractional perfect matching of

S 2
n − F. Suppose α is an edge of K2 induced by Vi and β is an edge Hamiltonian graph on odd number of vertices induced

by V j, where i , j. There exists a fractional perfect matching f1 in G
′

1 − {α, β, x, y, u}, where x and y are incident with α
and u is incident with β. Every vertex in G1 has exactly two neighbors outside in S 2

n −G1; moreover, these two neighbors
belong to different Gi, where 2 ≤ i ≤ n. So we may select an external-neighbor for each vertex from {x, y, u} such that
they are in different Gi’s. Let F

′

i = {x
′
, y
′
, u
′
, v
′ } ∩ V(Gi) for 2 ≤ i ≤ n, where x

′
, y
′
, u

′
and v

′
are external-neighbors of x,

y, u and v, respectively. For 2 ≤ i ≤ n, |F ′i | ≤ 2 and Gi is (2n − 5)-regular. So Gi − F
′

i has a fractional perfect matching fi
for 2 ≤ i ≤ n. Therefore, {(xx

′
), (yy

′
), (uu

′
), (vv

′
)} and f1, f2, · · · , fn induce a fractional perfect matching of S 2

n − F.

Case 2. |F1| = 2n − 4. Clearly, |Fi| ≤ 1 for 2 ≤ i ≤ n. Let F
′

1 = F1 − {α}, where α ∈ F1. Since G1 is fractional strongly
super matched, it follows that either graph G1 − F

′

1 has a fractional perfect matching or F
′

1 is a trivial FSMP set. If
G1 −F

′

1 has a fractional perfect matching, we consider to delete element α from G1 −F
′

1 and construct a fractional perfect
matching of S 2

n − F. If F
′

1 is a trivial FSMP set of G1 and v is an isolated vertex of G1 − F
′

1, then G
′

1 = G1 − F
′

1 − {v} has
fractional perfect matching by Lemma 1. Similarly, we consider to delete elements α and v from G1 − F

′

1 and construct a
fractional perfect matching of S 2

n − F. Compared with the case that F
′

1 is a trivial FSMP set of G1, the case that G1 − F
′

1
has a fractional perfect matching is easy and clear to construct a fractional perfect matching of S 2

n − F. Therefore we
consider the difficult case that F

′

1 is a trivial FSMP set of G1. We can easily see that it is possible that v = α. If v = α, we
only consider to delete element α from G1 − F

′

1 and this is easier to construct a fractional perfect matching than deleting
elements α and v from G1 − F

′

1. So we only consider the case deleting elements α and v from G1 − F
′

1 in the following.
Since G

′

1 has a fractional perfect matching, it follows from Proposition 1 that there is a partition {V1,V2, · · · ,Vt} of the
vertex set of V(G

′

1) such that, for each i, the graph G
′

1[Vi] is either graph K2 or a Hamiltonian graph on odd number of
vertices. To show that S 2

n − F has a fractional perfect matching, we consider the following cases according to element α.
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Subcase 2.1. α is a vertex. Suppose α is a vertex of K2 induced by Vi. Note that there exists a partition {V ′

1,V
′

2, · · · ,V
′

t−1}
of the vertex set of V(G

′

1−{α, γ}) such that, for each i, the graph (G
′

1−{α, γ})[Vi] is either graph K2 or a Hamiltonian graph
on odd number of vertices by Proposition 1, where γ is a neighbor of α in K2 induced by Vi. There is a fractional perfect
matching f1 in G

′

1 − {α, γ} by Proposition 1. Note that there are two vertices γ and v in G1 − F1 that are unmatched, so
let F

′

i = ({γ′ , v′ } ∩ V(Gi)) ∪ Fi, where γ
′

and v
′

are external-neighbors of γ and v in different Gi’s, respectively. Note that
|F ′i | ≤ 2 and Gi is (2n − 5)-regular, so Gi − F

′

i has a fractional perfect matching fi, where 2 ≤ i ≤ n. Hence, {(γγ′), (vv
′
)}

and f1, f2, · · · , fn induce a fractional perfect matching of S 2
n − F. Suppose α is a vertex of a Hamiltonian graph on odd

number of vertices. It is obvious that G1 − F1 − {v} has a fractional perfect matching f1. Note that there is one vertex v
in G1 − F1 that is unmatched, so let F

′

i = ({v′ } ∩ V(Gi)) ∪ Fi for 2 ≤ i ≤ n, where v
′

is external-neighbor of v. This facts
imply that vertex v can be matched to vertex v

′
. Since |F ′i | ≤ 2 and Gi is (2n − 5)-regular for 2 ≤ i ≤ n, Gi − F

′

i has a
fractional perfect matching fi. Thus, {(vv

′
)} and f1, f2, · · · , fn induce a fractional perfect matching of S 2

n − F.

Subcase 2.2. α is an edge. Let α = uw. Suppose α is an edge of K2 induced by Vi. Note that there exists a partition
{V ′

1,V
′

2, · · · ,V
′

t−1} of the vertex set of V(G
′

1−{α, u,w}) such that, for each i, the graph (G
′

1−{α, u,w})[Vi] is either graph K2
or a Hamiltonian graph on odd number of vertices by Proposition 1. For i = 1, there is a fractional perfect matching f1 in
G
′

1 − {α, u,w} by Proposition 1. For 2 ≤ i ≤ n, |Fi| ≤ 1. Every vertex in G1 has exactly two neighbors outside in S 2
n −G1;

moreover, these two neighbors belong to different Gi, where 2 ≤ i ≤ n. So we may select an external-neighbor for each
vertex from {u,w, v} such that they are in different Gi’s. Let F

′

i = ({u′ ,w′ , v′ }∩V(Gi))∪Fi for 2 ≤ i ≤ n, where u
′
, w

′
and v

′

are external-neighbors of u, w and v in different Gi’s, respectively. Note that |F ′i | ≤ 2 and Gi is (2n− 5)-regular, so Gi − F
′

i
has a fractional perfect matching fi, where 2 ≤ i ≤ n. Thus, {(uu

′
), (ww

′
), (vv

′
)} and f1, f2, · · · , fn induce a fractional

perfect matching of S 2
n − F. Suppose α is an edge of a Hamiltonian graph on odd number of vertices. It is obvious that

there exists a Hamiltonian path Vi − {u} on even number of vertices. Note that there exists a partition {V ′

1,V
′

2, · · · ,V
′
m}

of the vertex set of V(G
′

1 − {α, u}) such that, for each i, the graph (G
′

1 − {α, u})[Vi] is either graph K2 or a Hamiltonian
graph on odd number of vertices by Proposition 1. For i = 1, there is a fractional perfect matching f1 in G

′

1 − {α, u} by
Proposition 1. Let F

′

i = {u
′
, v
′ } ∩ V(Gi), where u

′
and v

′
are external-neighbors of u and v in different Gi’s, respectively.

Note that |F ′i | ≤ 2 and Gi is (2n − 5)-regular, so Gi − F
′

i has a fractional perfect matching fi, where 2 ≤ i ≤ n. Hence,
{(uu

′
), (vv

′
)} and f1, f2, · · · , fn induce a fractional perfect matching of S 2

n − F.

Case 3. |F1| = 2n − 5. Clearly, |Fi| ≤ 2 for 2 ≤ i ≤ n. G1 is fractional strongly super matched, which implies that either
graph G1 − F1 has a fractional perfect matching or F1 is a trivial FSMP set. Suppose G1 − F1 has a fractional perfect
matching f1. For 2 ≤ i ≤ n, note that |Fi| ≤ 2 and Gi is (2n − 5)-regular, so Gi − Fi has a fractional perfect matching
fi. Thus f1, f2, · · · , fn induce a fractional perfect matching of S 2

n − F. Suppose F1 is a trivial FSMP set and v is isolated
vertex of G1 − F1. For 2 ≤ i ≤ n, |Fi| ≤ 2. Let F

′

i = {v
′ } ∩ V(Gi) ∪ Fi, where v

′
is an external-neighbor of v. Note that

|F ′i | ≤ 3 and Gi is (2n− 5)-regular, so Gi − F
′

i has a fractional perfect matching fi. Thus, {(vv
′
)} and f1, f2, · · · , fn induce a

fractional perfect matching of S 2
n − F.

Case 4. |F1| ≤ 2n − 5. Furthermore, |Fi| ≤ 2n − 5 for 2 ≤ i ≤ n. So Gi − Fi has a fractional perfect matching fi for
1 ≤ i ≤ n. Thus, f1, f2, · · · , fn induce a fractional perfect matching of S 2

n − F.

If we can show that S 2
4 is fractional strongly super matched, then we can get our desired result from Theorem 6 that S 2

n is
fractional strongly super matched for n ≥ 4. Fortunately, S 2

4 is fractional strongly super matched , which will be proved
in Section 3. The following theorem is the main result of this paper.

Theorem 6 Let n ≥ 4, then f smp(S 2
n) = 2n − 3. Moreover, S 2

n is fractional strongly super matched.

3. Initial Case

We will show two initial cases. Let G = (VG, EG) and H = (VH , EH) be two graphs. Then their Cartesian product G2H
is the graph with vertex set VG2VH = {(u, v) : u ∈ VG, v ∈ VH}, such that its vertices (u, v) and (u

′
, v
′
) are adjacent if

and only if u = u
′

and (v, v
′
) ∈ EH , or (u, u

′
) ∈ EG and v = v

′
. In particular, G2K2 can be described as follows: Let

G1 and G2 be two copies of G such that u ∈ V(G1) and u
′ ∈ V(G2) correspond to u ∈ V(G). Then G2K2 is obtained by

taking G1 and G2 with the edges of the form (u, u
′
) for every u ∈ V(G). We call the edges of the form (u, u

′
) cross edges.

Clearly S 2
n = An2K2. To prove the Theorem 6, we need to prove the Lemma 3 and Lemma 4. We start with the following

Lemmas.

Lemma 3 f smp(S 2
4) = 5.

Proof. Let F ⊆ E(S 2
4) ∪ V(S 2

4). Note that S 2
4 = A42K2 is obtained by taking G1 and G2 with the edges of the form

(u, u
′
), where Gi is isomorphic to A4 for 1 ≤ i ≤ 2, u ∈ V(G1) and u

′ ∈ V(G2). Let F1 = F ∩ G1 and F2 = F ∩ G2.
Since f smp(S 2

4) ≤ f mp(S 2
4) and f mp(S 2

4) = 5 by Theorem 4, it follows that f smp(S 2
4) ≤ 5. For notational convenience,

assume |F2| ≤ |F1|. Now we show the claim that f smp(S 2
4) ≥ 5, that is, for any F ⊆ E(S 2

4) ∪ V(S 2
4) with |F| ≤ 4, S 2

4 − F
has a fractional perfect matching.
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Case 1. |F1| = 4. Note that |F2| = 0. By Theorem 3, G1 − F1 satisfies one of the following: (1) G1 − F1 has a perfect
matching; (2) G1 − F1 has an almost perfect matching; (3) F1 is trivial SMP set and x is an isolated vertex. As we saw
above, G1 − F1 has at most two vertices x and y that are unmatched. So G1 − F1 − {x, y} has a fractional perfect matching
f1. Let F

′

2 = {x
′
, y
′ } ∩ V(G2), where x

′
and y

′
are neighbors of x and y in G2, respectively. Since |F ′2| = 2, it follows that

G2 −F
′

2 is Hamiltonian by Theorem 1. So G2 −F
′

2 has a fractional perfect matching f2. Thus f1 and f2 induce a fractional
perfect matching of S 2

4 − F.

Case 2. |F1| = 3. Note that |F2| ≤ 1 and G1 is 4-regular. Since smp(A4) = 4 by Theorem 3, it follows that G1 − F1
has either a perfect matching or an almost perfect matching. Assume that G1 − F1 has a perfect matching f1. G2 − F2 is
Hamiltonian by Theorem 1, so G2 − F2 has a fractional perfect matching f2. Thus f1 and f2 induce a fractional perfect
matching of S 2

4 − F. We assume that G1 − F1 has an almost perfect matching, that is, there exists a matching M1 missing
a vertex u (If F contains one cross edge of between G1 and G2, there exists a matching M

′

1 in G1 − F1 missing a vertex v
such that v is not incident with the cross edge in F by Lemma 1.7). We would like to utilize the elements of M1 to build
fractional perfect matching in G1 − F1 − {u}. By Theorem 1, G2 − F2 − {u

′ } is Hamiltonian, where u
′ ∈ V(G2) and uu

′
is a

cross edge, so G2 − F2 − {u
′ } has a fractional perfect matching f2. These fact imply that vertex u can be matched to vertex

u
′

and then M1 ∪ {(uu
′
)} and f2 induce a fractional perfect matching of S 2

4 − F.

Case 3. |F1| ≤ 2. Clearly, |F2| ≤ 2. Since G1 − F1 and G2 − F2 are Hamiltonian by Theorem 1, it follows that G1 − F1 and
G2 − F2 have fractional perfect matchings f1 and f2, respectively. Thus, f1 and f2 induce a fractional perfect matching of
S 2

4 − F.

A standard way to view A4 is via its recursive structure. Let Hi be the subgraph of A4 induced by vertices where the
last symbol is i, where 1 ≤ i ≤ 4. Then Hi is isomorphic to cycle of the three vertices. Each vertex v in Hi has exactly
two neighbors outside of Hi; moreover, its two neighbors belong to different H j’s. We call these neighbors the external-
neighbors of v. We call the edges whose end-vertices belong to different H j’s cross edges. Since the Hi’s are defined via
the 4th position, we say it is a decomposition via the 4th position. It is easy to see that for a given pair of Hi and H j, there
are (4 − 2)! = 2! cross edges between them; moreover, they are independent. We start with the following results.

Lemma 4 Every optimal FSMP set of S 2
4 is trivial, that is, S 2

4 is fractional strongly super matched.

Proof. Since f smp(S 2
4) = 5 by Lemma 3, it follows that we can complete the proof by showing that for any F ⊆

E(S 2
4)∪V(S 2

4) with |F| = 5, S 2
4 − F has a fractional perfect matching or S 2

4 − F has an isolated vertex such that F is trivial
FSMP set. So we only consider the case that S 2

4 − F has no isolated vertices. Note that S 2
4 = A42K2. Let F1 = F ∩ G1

and F2 = F ∩ G2. Let H1i be subgraph of G1 induced by the set of vertices with i in the last position for 1 ≤ i ≤ 4. Let
F1i be the element of F1 in H1i, where 1 ≤ i ≤ 4. Let H2i be subgraph of G2 induced by the set of vertices with i in the
last position for 1 ≤ i ≤ 4. Let F2i be the element of F2 in H2i, where 1 ≤ i ≤ 4. For notational convenience, assume
|F2| ≤ |F1|, |F1i| ≤ |F11| and |F2i| ≤ |F21|, where 2 ≤ i ≤ 4. Now we show that S 2

4 − F has a fractional perfect matching.

Case 1. |F1| = 5. Let F
′

1 = F1 − {α}, where {α} ⊆ F1. By Theorem 3, G1 − F
′

1 satisfies one of the following: (1) G1 − F
′

1
has a perfect matching; (2) G1 − F

′

1 has an almost perfect matching; (3) F
′

1 is trivial SMP set, that is, G1 − F
′

1 has an
isolated vertex x. We consider the following two possibilities according to α.

Subcase 1.1. α is a vertex. Suppose G1−F
′

1 has a perfect matching. So G1−F
′

1−{α} has a vertex γ that is unmatched, where
γ is a neighbor of α in G1. This implies that G1 − F

′

1 − {α, γ} has a fractional perfect matching f1. Let F
′

2 = {γ
′ } ∩ V(G2),

where where γ
′
is a neighbor of γ in G2. Since |F ′2| = 1, it follows that G2−F

′

2 is Hamiltonian by Theorem 1, then G2−F
′

2
has a fractional perfect matching f2. Hence, {(γγ′)} and f1, f2 induce a fractional perfect matching of S 2

4 − F. Suppose
G1−F

′

1 has an almost perfect matching and a vertex v that is unmatched. So G1−F
′

1−{α} has two vertices γ and v that are
unmatched, where γ is a neighbor of α in G2. This implies that G1−F

′

1−{α, γ, v} has a fractional perfect matching f1. Let
F
′

2 = {γ
′
, v
′ } ∩ V(G2), where γ

′
is a neighbor of γ in G2, v

′
is a neighbor of v in G2. Since |F ′2| = 2, it follows that G2 − F

′

2
is Hamiltonian by Theorem 1, then G2 − F

′

2 has a fractional perfect matching f2. Hence, {(γγ′), (vv
′
)} and f1, f2 induce

a fractional perfect matching of S 2
4 − F. Suppose F

′
is trivial SMP set, that is, there are at most two vertices x and y in

G1−F
′

1 that are unmatched. So G1−F
′

1−{α} has at most three vertices γ, x and y that are unmatched, where γ is a neighbor
of α in G1. This implies that G1 − F

′

1 − {α, γ, x, y} has a fractional perfect matching f1. Let F
′

2 = {γ
′
, x
′
, y
′ } ∩ V(G2),

where γ
′

is a neighbor of γ in G2, x
′

is a neighbor of x in G2 and y
′

is a neighbor of y in G2. Note that |F ′2| = 3. If F
′

2
contains three vertices and |F21| = 3, H2i − F2i has a fractional perfect matching f2i, where 2 ≤ i ≤ 4. If F

′

2 contains
three vertices, |F21| = 2 and |F22| = 1, then H21 − F21 = {v} and H22 − F22 is K2. Since v has two external-neighbors
and v is not an isolated vertex, there is an external-neighbor v

′
of v in H2i, where 3 ≤ i ≤ 4. Without loss of generality,

assume v
′ ∈ V(H23). It clear that H22 − F22 and H23 − {v

′ } have perfect matchings f22 and f23, respectively, and H24 has
a fractional perfect matching f24. If F

′

2 contains three vertices and |F21| = |F22| = |F23| = 1, then H21 − F21, H22 − F22
and H23 − F23 are K2, respectively. And H24 has a fractional perfect matching f24. So G2 − F

′

2 has a fractional perfect
matching f2. Hence, {(γγ′ ), (xx

′
), (yy

′
)} and f1, f2 induce a fractional perfect matching of S 2

4 − F.
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Subcase 1.2. α is an edge. Let α = uw. Suppose G1 − F
′

1 has a perfect matching. So G1 − F
′

1 − {α} has at most two
vertices u and w that are unmatched. This implies that G1 − F

′

1 − {α, u,w} has a fractional perfect matching f1. Let
F
′

2 = {u
′
,w

′ } ∩ V(G2), where u
′

is a neighbor of u in G2 and w
′

is a neighbor of w in G2. Since |F ′2| = 2, it follows that
G2−F

′

2 is Hamiltonian by Theorem 1. So G2−F
′

2 has a fractional perfect matching f2. Therefore, {(uu
′
), (ww

′
)} and f1, f2

induce a fractional perfect matching of S 2
4 − F. Suppose G1 − F

′

1 has an almost perfect matching and a vertex v that is
unmatched. So G1−F

′

1−{α} has at most three vertices v, u and w that are unmatched. This implies that G1−F
′

1−{α, v, u,w}
has a fractional perfect matching f1. Let F

′

2 = {v
′
, u
′
,w

′ } ∩ V(G2), where v
′

is a neighbor of v in G2, u
′

is a neighbor of
u in G2 and w

′
is a neighbor of w in G2. Since |F ′2| = 3, it follows that G2 − F

′

2 has a fractional perfect matching f2.
Hence, {(uu

′
), (ww

′
), (vv

′
)} and f1, f2 induce a fractional perfect matching of S 2

4 − F. Suppose F1 is trivial SMP set, that
is, there are at most two vertices x and y in G1 − F

′

1 that are unmatched. So G1 − F
′

1 − {α} has at most four vertices
x, y, u and w that are unmatched. This implies that G1 − F

′

1 − {α, x, y, u,w} has a fractional perfect matching f1. Let
F
′

2 = {x
′
, y
′
, u
′
,w

′ } ∩ V(G2), where x
′

is a neighbor of x in G2, y
′

is a neighbor of y in G2, u
′

is a neighbor of u in G2,
and w

′
is a neighbor of w in G2. Note that |F ′2| = 4 and H2i is isomorphic to a cycle of three vertices, where 1 ≤ i ≤ 4.

If |F21| = 3 and |F22| = 1, then H22 − F22 is K2. So H22 − F22 has a fractional perfect matching f22. Clearly, H2i − F2i

has fractional perfect matching f2i, where 3 ≤ i ≤ 4. So f22, f23 and f24 induce a fractional perfect matching of G2 − F
′

2.
Thus, f1, f22, f23 and f24 induce a fractional perfect matching of S 2

4 − F. If |F21| = 2 and |F22| = 2, then H21 − F21 is an
isolated vertex x and H22−F22 is an isolated vertex y. We may select an external-neighbor for each vertex from {x, y} such
that they are in different H2i’s, where 3 ≤ i ≤ 4, otherwise, we can decompose G2 by choosing a new position. Assume
x
′ ∈ V(H23) and y

′ ∈ V(H24). Then H23−{x
′ } and H24−{y

′ } are two K2. So H23−{x
′ } and H24−{y

′ } have fractional perfect
matching f23 and f24. Thus f1, f23 and f24 induce a fractional perfect matching of S 2

4 − F. If |F21| = 2, |F22| = 1 and
|F23| = 1, then H21−F21 has an isolated vertex x, H22−F22 and H23−F23 are two K2. We may select an external-neighbor
of x in H24, say x

′ ∈ V(H24), otherwise, we can decompose G2 by choosing a new position. Then H22 − F22 and H23 − F23
has a fractional perfect matching f2i, where 2 ≤ i ≤ 3. And H24 − {x

′ } has a fractional perfect matching f24. Therefore,
f1, f22, f23 and f24 induce a fractional perfect matching of S 2

4 − F. If |F21| = |F22| = |F23| = |F24| = 1, then H2i − F2i is K2,
where 1 ≤ i ≤ 4. So f21, f22, f23 and f24 induce a fractional perfect matching of G2 − F

′

2. Therefore, f1, f21, f22, f23 and f24
induce a fractional perfect matching of S 2

4 − F.

Case 2. |F1| = 4. Clearly, |F2| ≤ 1. By Theorem 3, G1 − F1 satisfies one of the following: (1) G1 − F1 has a perfect
matching; (2) G1 − F1 has an almost perfect matching; (3) F1 is trivial SMP set and x is an isolated vertex. Suppose
G1 − F1 has a perfect matching, that is, G1 − F1 has a fractional perfect matching f1. Since |F2| ≤ 1, it follows that
G2 − F2 is Hamiltonian by Theorem 1, then G2 − F2 has a fractional perfect matching f2. Therefore, f1 and f2 induce
a fractional perfect matching of S 2

4 − F. Suppose G1 − F1 has an almost perfect matching, that is, G1 − F1 has a vertex
v that is unmatched. So G1 − F1 − {v} has a fractional perfect matching f1 by Lemma 1. Let F

′

2 = ({v′ } ∩ V(G2)) ∪ F2,
where v

′
is a neighbor of v in G2. Since |F2| ≤ 1, clearly, |F ′2| ≤ 2. So G2 − F

′

2 is Hamiltonian by Theorem 1, then
G2 − F2 has a fractional perfect matching f2. Thus f1 and f2 induce a fractional perfect matching of S 2

4 − F. Suppose F1
is trivial SMP set and x is an isolated vertex, that is, G1 − F1 has at most two vertices x and y that are unmatched. Let
F
′

2 = ({x′ , y′ } ∩ V(G2)) ∪ F2, where x
′

is a neighbor of x in G2, y
′

is a neighbor of y in G2. Since |F ′2| ≤ 3. G2 − F
′

2 has a
fractional perfect matching f2 by Case 1. Thus f1 and f2 induce a fractional perfect matching of S 2

4 − F.

Case 3. |F1| = 3 and |F2| ≤ 2. Since G2 − F2 is Hamiltonian by Theorem 1, it follows that G2 − F2 has a fractional perfect
matching f2. It follows from Theorem 3 that we only consider the case that F1 consists of an odd number of vertices. As
we have now seen, if F1 contains three vertices and |F11| = 3, then H1i − F1i has a fractional perfect matching f1i, where
2 ≤ i ≤ 4. So f12, f13, f14 and f2 induce a fractional perfect matching of S 2

4 − F. If F1 contains three vertices, |F11| = 2
and |F12| = 1, then H11 − F11 = {v}, and H12 − F12 is K2. Since v has two external-neighbors and v is not an isolated
vertex, there is an external-neighbor v

′
of v in H1i, where 3 ≤ i ≤ 4. Without loss of generality, assume v

′ ∈ V(H13).
It clear that H12 − F12 and H13 − {v

′ } have perfect matchings f12 and f13, respectively, and H14 has a fractional perfect
matching f4. So {(vv

′
)} and f12, f13, f14, f2 induce a fractional perfect matching of S 2

4 − F. If F1 contains three vertices
and |F11| = |F12| = |F13| = 1, then H11 − F11, H12 − F12 and H13 − F13 are K2, respectively. H1i − F1i has fractional perfect
matching f1i, where 1 ≤ i ≤ 3. And H14 has a fractional perfect matching f14, so f11, f12, f13, f14, f2 induce a fractional
perfect matching of S 2

4 − F. Next we consider the case that F1 contains one vertex and two edges. If F11 consists of
one vertex and two edges, H11 − F11 has at most two isolated vertices, say u and v. We may select an external-neighbor
for each vertex from {u, v} such that they are in different H1i’s, where 2 ≤ i ≤ 4. For notational convenience, assume
u
′ ∈ V(H12) and v

′ ∈ V(H13), where u
′
is an external-neighbor of u in V(H12), v

′
is an external-neighbor of v in V(H13). So

H12 − {u
′ } and H13 − {v

′ } have fractional perfect matchings f12 and f13, respectively. H14 has a fractional perfect matching
f14. So f12, f13, f14 and f2 induce a fractional perfect matching of S 2

4 − F. If F11 consists of one vertex and one edge, and
F12 contains one edge. H11 − F11 has at most two isolated vertices, say u and v, and H12 − F12 is a path P with three
vertices. Let P = xyz. We can find that the external-neighbor of one of u and v is adjacent to one of x and z, otherwise,
we can decompose G1 by choosing a new position. Without loss of generality, assume that u is adjacent to x. Note that
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there is the external-neighbor v
′

of v in H1i, where 3 ≤ i ≤ 4. Assume v
′ ∈ V(H13), then H13 − {v

′ } has a fractional perfect
matching f13. Clearly, H14 has a fractional perfect matching f14. So {(ux), (yz), (vv

′
)} and f13, f14, f2 induce a fractional

perfect matching of S 2
4 − F. If F1 contains cross edges such that F11 consists of one vertex and F12 contains one edge, we

can obtain H11 − F11 has a fractional perfect matching f11 and H12 − F12 is a path P = uvw with three vertices. It obvious
that we can find the external-neighbor u

′
of u in H1i, where 3 ≤ i ≤ 4. Assume u

′ ∈ V(H13). Moreover, H13 − {u
′ } and

H14 have fractional perfect matchings f13 and f14, respectively. When F1 contains no cross edges, we can choose a new
position to decompose G1 such that |F12 ∩ E(H12)| = 1 and F11 consists of one vertex. So {(uu

′
), (vw)} and f11, f13, f14

induce a fractional perfect matching of G1−F1. Thus {(uu
′
), (vw)} and f11, f13, f14, f2 induce a fractional perfect matching

of S 2
4 − F.

Case 4. |F1| ≤ 2. By the Case 2 and Case 3, S 2
4 − F has a fractional perfect matching.

Thus, we prove that every optimal FSMP set of S 2
4 is trivial, that is, S 2

4 is fractional strongly super matched.

With Lemma 3 and Lemma 4 proved, we immediately obtain the following result.

Theorem 7 f smp(S 2
4) = 5. Moreover, S 2

4 is fractional strongly super matched.
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