Fractional Strong Matching Preclusion of Split-Star Networks ${ }^{\text {a }}$

Ping Han 1, Yuzhi Xiao ${ }^{2}$, Chengfu $\mathrm{Ye}^{1} \& \mathrm{He} \mathrm{Li}^{2}$
${ }^{1}$ School of Mathematics and Statistics, Qinghai Normal University, Xining, Qinghai 810008, China
${ }^{2}$ School of Computer Science, Qinghai Normal University, Xining, Qinghai 810008, China
Correspondence: Ping Han, School of Mathematics and Statistics, Qinghai Normal University, Xining, Qinghai 810008, China.

Received: May 30, 2019 Accepted: July 14, 2019 Online Published: July 17, 2019
doi:10.5539/jmr.v11n4p32 URL: https://doi.org/10.5539/jmr.v11n4p32

Abstract

The matching preclusion number of graph G is the minimum size of edges whose deletion leaves the resulting graph without a perfect matching or an almost perfect matching. Let F be an edge subset and F^{\prime} be a subset of edges and vertices of a graph G. If $G-F$ and $G-F^{\prime}$ have no fractional matching preclusion, then F is a fractional matching preclusion (FMP) set, and F^{\prime} is a fractional strong matching preclusion (FSMP) set of G. The FMP (FSMP) number of G is the minimum number of FMP (FSMP) set of G. In this paper, we study fractional matching preclusion number and fractional strong matching preclusion number of split-star networks. Moreover, We categorize all the optimal fractional strong matching preclusion sets of split-star networks.

Keywords: perfect matching, fractional matching preclusion number, fractional strong matching preclusion number, split-star networks
AMS subject classification 2010: 05C15, 05C76, 05C78.

1. Introduction

We often write $V(G)$ and $E(G)$ are vertex set and edge set, respectively. Each edge of G is usually denoted by $u v$ or $v u$. If $e=u v$ is an edge of G, then e is said to join u and v. The minimum degree of G is denoted by $\delta(G)$. A path is even path if it has even number of vertices, otherwise, is odd path. A cycle is even cycle if it has even number of vertices, otherwise, is odd cycle. A cycle (respectively, path) in G that passes through each vertex of G exactly once is called a Hamiltonian cycle (respectively, Hamiltonian path) of G. A graph that contains a Hamiltonian cycle is itself called Hamiltonian. A graph is Hamiltonian connected if there is a Hamiltonian path between every pair of vertices. Induced subgraph of graph G is denoted by $G[S]$, where S is nonempty subset of $V(G)$ or $E(G)$. A subgraph H of a graph G is called an induced subgraph if there is nonempty subset S of $V(G)$ or $E(G)$ such that $H=G[S]$. The complete graph of order n is denoted by K_{n}.

1.1 (Strong) Matching Preclusion

A perfect matching in a graph is a set of edges such that every vertex is incident with exactly one edge in this set. An almost perfect matching is a set of edges such that every vertex, except one, is incident with exactly one edge in this set, and the exceptional vertex is incident with none. A matching preclusion set of a graph G is a set of edges whose deletion leaves the resulting graph with neither perfect matchings nor almost perfect matchings. The matching preclusion number of a graph G, denoted by $m p(G)$, is the size of a smallest matching preclusion set of G. Any such optimal set is called an optimal matching preclusion set. The concept of matching preclusion was introduced by Birgham et al. (Birgham, Harry, Biolin, \& Yellen, 2005) and further studied in (Cheng, Lesniak, Lipman, \& Lipták, 2008; Cheng, Lesniak, Lipman, Lipták, 2007; Wang, Mao, Cheng, \& Zou, 2019; Wang, Melekian, Cheng, \& Mao, 2019), with special attention to interconnection networks. For graphs with an even number of vertices, an obvious matching preclusion set is the set of edges incident with a single vertex; such a set is called a trivial matching preclusion set. A graph G satisfying $m p(G)=\delta(G)$ is called maximally matched, and in a maximally matched graph some trival matching preclusion sets are optimal. If every optimal matching preclusion set is trivial, then the graph G is called super matched. Being super matched is a desirable property for any real-life networks, as it is unlikely that in the event of random edge failure, every edge incident with some fixed vertex fails.
A set F of edges and vertices of G is a strong matching preclusion set (SMP set for short) if $G-F$ has neither perfect

[^0]

Figure 1. The generator graph for split-stars
matchings nor almost perfect matchings. The strong matching preclusion number (SMP number for short) of G, denoted by $\operatorname{smp}(G)$, is the minimum number of SMP sets of G. A SMP set is optimal if $|F|=\operatorname{smp}(G)$. The problem of strong matching preclusion set was proposed by Park and Ihm (Park \& Ihm) and further studied by (Mao, Wang, Cheng, \& Melekian, 2018), with special attention to interconnection networks. We remark that if F is an optimal strong matching preclusion set, then we may assume that no edge in F is incident with a vertex in F. It follows from the definitions of $m p(G)$ and $\operatorname{smp}(G)$ that $\operatorname{smp}(G) \leq m p(G) \leq \delta(G)$. If $\operatorname{smp}(G)=\delta(G)$, then G is strongly maximally matched. In addition, for any strong matching preclusion set F, if $G-F$ has isolated vertices, then G is strongly super matched and we say F to be a trivial strong matching preclusion set, otherwise F is nontrivial.

1.2 Fractional(strong) Matching Preclusion

A standard way to consider matchings in polyhedral combinatorics is as follows. Given a set of edges S of G, we define f^{S} to be the indicator function of S, that is, $f^{S}: E(G) \longrightarrow\{0,1\}$ such that $f_{S}(e)=1$ if and only if $e \in S$. Let X be a set of vertices of G. We denote $\tau(X)$ to be the set of edges with exactly one end in X. If $X=\{v\}$, we write $\tau(v)$ instead of $\tau(\{v\})$. Clearly, $f^{M}: E(G) \longrightarrow\{0,1\}$ is the indicator function of the perfect matching M if $\sum_{e \in \tau(v)} f^{M}(e)=1$ for each vertex v of G, and $f^{M}: E(G) \longrightarrow\{0,1\}$ is the indicator function of the almost perfect matching M if $\sum_{e \in \tau(v)} f^{M}(e)=1$ for each vertex v of G, except one vertex say v, and $\sum_{e \in \tau(v)} f^{M}(e)=0$. In fact, $f^{M}(E(G))=|V(G)| / 2$ if M is a perfect matching and $f^{M}(E(G))=(\mid V(G)-1) \mid / 2$ if M is an almost perfect matching. A relaxation from an integer set to a continuous set is to replace the codomain of the indicator function from $\{0,1\}$ to the interval $[0,1]$. Let $f: E(G) \longrightarrow[0,1]$. Naturally, we call f a fractional matching if $\sum_{e \in \tau(v)} f(e) \leq 1$ for each vertex v of G. Similarly, f is a fractional perfect matching if $\sum_{e \in \tau(v)} f(e)=1$ for each vertex v of G. Thus, if f is a fractional perfect matching, then

$$
f(E(G))=\sum_{e \in E(G)} f(e)=\frac{1}{2} \sum_{v \in V(G)} \sum_{e \sim v} f(e)=\frac{|V(G)|}{2} .
$$

Recently, Y. Liu and W. Liu (Y. Liu \& W. Liu, 2016) introduced such a generalization by precluding fractional perfect matchings only. An edge subset F of G is a fractional matching preclusion set (FMP set for short) if $G-F$ has no fractional perfect matchings. In addition, the fractional matching preclusion number (FMP number for short) of G, denoted by $\operatorname{fmp}(G)$, is the minimum size of $F M P$ sets of G, that is, $\operatorname{fmp}(G)=\min \{|F|:$ F is an FMP set $\}$. Clearly,

$$
\operatorname{fmp}(G) \leq \delta(G),
$$

and by the definition of $\operatorname{fmp}(G)$, when $|V(G)|$ is even,

$$
m p(G) \leq f m p(G)
$$

If $\operatorname{fmp}(G)=\delta(G)$, then G is fractional maximally matched. If $G-F$ has isolated vertices for every optimal fractional matching preclusion set F, then G is fractional super matched.
Liu and Liu (Y. Liu \& W. Liu, 2016) also introduced a generalization of strong matching preclusion under the same assumption by precluding fractional perfect matchings only. A set F of edges and vertices of G is a fractional strong matching preclusion set (FSMP set for short) if $G-F$ has no fractional perfect matchings. The fractional strong matching preclusion number (FSMP number for short) of G, denoted by $f \operatorname{smp}(G)$, is the minimum size of FSMP sets of G, that is, $f \operatorname{smp}(G)=\min \{|F|: \mathrm{F}$ is an FSMP set $\}$. Since a fractional matching preclusion set is a fractional strong matching preclusion set, it is clear that

$$
f \operatorname{smp}(G) \leq f m p(G) \leq \delta(G)
$$

Figure 2. S_{4}^{2}

Figure 3. A_{4}

If $f \operatorname{smp}(G)=\delta(G)$, then G is fractional strongly maximally matched. In addition, for any fractional strong matching preclusion set F, if $G-F$ has isolated vertices, then G is fractional strongly super matched and we say F to be a trivial fractional strong matching preclusion set, otherwise F is nontrivial. For more details about this concept, we refer to the papers (Y. Liu \& W. Liu, 2016; Ma, Mao, Cheng, \& Wang, 2018).

1.3 Split-Star Networks S_{n}^{2}

The split-star network as a variant of the star-graph network. In particular, a split-star network can be decomposed into two disjoint alternating group networks. Both the star-graph and alternating group networks are special members of the family of generalized arrangement graphs (Day \& Tripathi, 1992; Jwo, Lakshmivarahan, \& Dhall, 1993). Therefore, the split-star network inherits the topological properties of the alternating group networks and arrangement graphs, and can be a good candidate for a multiprocessor interconnection.

In this paper, we study fractional strong matching preclusion problem for the split-star networks. We first give the definition of the split-star S_{n}^{2} introduced in (Cheng, Lesniak, \& Park, 2001). The vertex set is the set of the n ! permutations on $\{1,2, \cdots, n\}$. To describe the adjacency, it is convenient to look at the generator graph. Consider the generator graph
in Figure 1 (a star with the root split). Two permutations are adjacent if one can be obtained from the other by either a 2-exchange or a 3-rotation. A 2-exchange interchanges the symbols in positions 1 and 2 (that is, corresponding to the center edge $(1,2)$ in Figure 1). A 3-rotation rotates the symbols in the positions labelled by the vertices of a triangle, that is, the triangle with vertices 1,2 and k for some $k \in\{3,4, \cdots, n\}$. The rotation can be forward or reverse. So there are two 3 -rotations for each k. Thus, S_{n}^{2} is a $(2 n-3)$-regular graph with $n!$ vertices. Throughout this paper, we use $\left[a_{1}, a_{2}, a_{3}, \cdots, a_{n}\right]$ to denote a permutation written as a rearrangement of objects, that is, a_{i} in position i. However, for notational simplicity in pictures, this permutation is written as $a_{1} a_{2} a_{3} \cdots a_{n}$.
Let $V_{n}^{n: i}$ be the set of all vertices in S_{n}^{2} with the nth position having value i, i.e., $V_{n}^{n: i}=\{p \mid p=\underbrace{x x \cdots x}_{n-1} i, x$ is a don't care symbol $\}$. The set $\left\{V_{n}^{n: i} \mid 1 \leq i \leq n\right\}$ forms a partition of $V\left(S_{n}^{2}\right)$. Let $S_{n-1}^{2: i}$ denote the subgraph of S_{n}^{n-1} induced by $V_{n}^{n: i}$, i.e., $S_{n-1}^{2: i}=S_{n}^{2}\left[V_{n}^{n: i}\right]$, it is easy to know that $S_{n-1}^{2: i}$ is isomorphic to S_{n-1}^{2}. Every vertex v in $S_{n-1}^{2: i}$ has exactly two neighbors outside of $S_{n-1}^{2: i}$; moreover these two neighbors belong to different $S_{n-1}^{2: j} \mathrm{~s}$, where $j \neq i$. We call these neighbors as the external-neighbors of v. We call these edges, whose end-vertices belong to different subgraphs, as cross edges. For any two vertices in the same subgraph $S_{n-1}^{2: i}$, their external-neighbors in other subgraphs are different. For example, a partition of S_{4}^{2} is shown in Figure 2. Let $S_{n, E}^{2}$ be a subgraph of S_{n}^{2} induced by the set of even permutations. In other words, all even permutations form the vertex-set of $S_{n, E}^{2}$, in which the adjacency rule is precisely the 3-rotation. We know that $S_{n, E}^{2}$ is the alternating group graph A_{n} (Jwo, Lakshmivarahan, Dhall, 1993). Let $S_{n, O}^{2}$ be a subgraph of S_{n}^{2} induced by the set of all odd permutations, in which the adjacency rule is precisely the 3-rotation. We have that $S_{n, O}^{2}$ is isomorphic to A_{n} and $S_{n, O}^{2}$ is isomorphic to $S_{n, E}^{2}$ via the 2-exchange $\phi\left(a_{1} a_{2} a_{3} \cdots a_{n}\right)=a_{2} a_{1} a_{3} \cdots a_{n}$. Hence, there are $\frac{n!}{2}$ matching edges between $S_{n, E}^{2}$ and $S_{n, O}^{2}$, i.e., there is one to one correspondence between $S_{n, E}^{2}$ and $S_{n, O}^{2}$. Indeed, the split-star network S_{n}^{2} is introduced in (Cheng et al., 2001) which is the companion graph of A_{n}. In this paper, we study the fractional strong matching preclusion problem for the split-star graph. Because deletion of vertices is allowed, the analysis will be more involved than the analysis of the correspond matching preclusion problem.

1.4 Related Results

We summarize some knowledge which will be needed later.
Proposition 1 (Scheinerman \& Ullman, 1997) The graph G has a fractional perfect matching if and only if there is a partition $\left\{V_{1}, V_{2}, \cdots, V_{n}\right\}$ of the vertex set of $V(G)$ such that, for each i, the graph $G\left[V_{i}\right]$ is either K_{2} or a Hamiltonian graph on odd number of vertices.
lemma 1 (Ma, Mao, Cheng, \& Melekian, 2018.) Let G be fractional strongly super matched graph with $\delta(G) \geq 2$. If F is a trivial FSMP set of G and $G-F$ has an isolated vertex v, then $G-F-v$ has a fractional perfect matching.
Before we prove the fractional strong perfect matching preclusion results of S_{n}^{2}, now we need some preliminary results on the perfect matching preclusion, strong perfect matching preclusion and Hamiltonian properties of graphs S_{n}^{2} and A_{n}.
Theorem 1 (Hsu, Li, Tan, \& Hsu, 2004) Let $n \geq 4$. Suppose $F \subseteq V\left(A_{n}\right) \cup E\left(A_{n}\right)$. If $|F| \leq 2 n-7$, then $A_{n}-F$ is Hamiltonian connected; if $|F| \leq 2 n-6$, then $A_{n}-F$ is Hamiltonian.

Theorem 2 (Cheng, Lesniak, Lipman, \& Lipták, 2008) Suppose $n \geq 4$. Then $m p\left(A_{n}\right)=2 n-4$ and $m p\left(S_{n}^{2}\right)=2 n-3$. Moreover, every optimal matching preclusion set is trivial.
Theorem 3 (Bonneville, Cheng, \& Renzi, 2011) Let $n \geq 4$. Then $\operatorname{smp}\left(A_{n}\right)=2 n-4$. Moreover A_{n} is super strongly matched; that is, every optimal strong matching preclusion set of A_{n} is trivial.
Corollary 1 (Bonneville, Cheng, \& Renzi, 2011) Let S_{n}^{2} be a split-star with $n \geq 4$. Then S_{n}^{2} is maximally strongly matched; that is, $\operatorname{smp}\left(S_{n}^{2}\right)=2 n-3$. Moreover, S_{n}^{2} is super strongly matched; that is, every optimal strong matching preclusion set of S_{n}^{2} is trivial.
lemma 2 (Cheng \& Siddiqui, 2016) Suppose G has an almost perfect matching M missing v. If v is not an isolated vertex in G, then G has an almost perfect matching missing a vertex other than v.

2. Main Results

Since S_{n}^{2} has an even number of vertices and is $(2 n-3)$-regular, the next result follows by Theorem 2 and $m p\left(S_{n}^{2}\right) \leq$ $\operatorname{fmp}\left(S_{n}^{2}\right) \leq \delta\left(S_{n}^{2}\right)$.
Theorem 4 Let $n \geq 4$. Then $\operatorname{fmp}\left(S_{n}^{2}\right)=2 n-3$. Moreover, S_{n}^{2} is fractional super matched.
We now turn our attention to S_{n}^{2}. Note that $S_{n-1}^{2: i}$ is isomorphic to S_{n-1}^{2}, where $1 \leq i \leq n$. it is easy to know that S_{n}^{2} can be decomposed into n copies, i.e., $S_{n-1}^{2: 1}, S_{n-1}^{2: 2}, \cdots, S_{n-1}^{2: n}$. We will prove a more general result.

Theorem 5 If S_{n-1}^{2} is fractional strongly super matched for $n \geq 5$, then S_{n}^{2} is fractional strongly super matched.
Proof. Let S_{n}^{2} be a graph that consists of $G_{1}, G_{2}, \cdots, G_{n}$, where $G_{1}, G_{2}, \cdots, G_{n}$ are copies of S_{n-1}^{2}. Let $F \subseteq E\left(S_{n}^{2}\right) \cup V\left(S_{n}^{2}\right)$ with $|F| \leq 2 n-3$. Let $F_{i}=G_{i} \cap F$, where $1 \leq i \leq n$. For notational convenience, we assume $\left|F_{i}\right| \leq\left|F_{1}\right|$ for $2 \leq i \leq n$. We will show that $S_{n}^{2}-F$ satisfy one of the following: (1) $S_{n}^{2}-F$ has a fractional perfect matching; (2) $S_{n}^{2}-F$ has an isolated vertex such that F is trivial FSMP set. If (2) is true, then we are done. So we may assume that $S_{n}^{2}-F$ has no isolated vertices.
Case 1. $\left|F_{1}\right|=2 n-3$. Clearly, $\left|F_{i}\right|=0$ for each F_{i}, where $2 \leq i \leq n$. Let $F_{1}^{\prime}=F_{1}-\{\alpha, \beta\}$, where $\{\alpha, \beta\} \subseteq F_{1}$. Since G_{1} is fractional strongly super matched, $G_{1}-F_{1}^{\prime}$ has a fractional perfect matching or F_{1}^{\prime} is a trivial FSMP set of G_{1}. If $G_{1}-F_{1}^{\prime}$ has a fractional perfect matching, we consider to delete elements α and β from $G_{1}-F_{1}^{\prime}$ and construct a fractional perfect matching of $S_{n}^{2}-F$. If F_{1}^{\prime} is a trivial FSMP set of G_{1} and v is an isolated vertex of $G_{1}-F_{1}^{\prime}$, then $G_{1}^{\prime}=G_{1}-F_{1}^{\prime}-\{v\}$ has fractional perfect matching by Lemma 1. Similarly, we consider to delete elements α, β and v from $G_{1}-F_{1}^{\prime}$ and construct a fractional perfect matching of $S_{n}^{2}-F$. Compared with the case that F_{1}^{\prime} is a trivial FSMP set of G_{1}, the case that $G_{1}-F_{1}^{\prime}$ has a fractional perfect matching is easy and clear to construct a fractional perfect matching of $S_{n}^{2}-F$. Therefore we consider the difficult case that F_{1}^{\prime} is a trivial FSMP set of G_{1}. We can easily see that it is possible that $v \in\{\alpha, \beta\}$. If $v \in\{\alpha, \beta\}$, we only consider to delete elements α and β from $G_{1}-F_{1}^{\prime}$ and this is easier to construct a fractional perfect matching than deleting elements α, β and v from $G_{1}-F_{1}^{\prime}$. So we only consider the case deleting elements α, β and v from $G_{1}-F_{1}^{\prime}$ in the following. Since G_{1}^{\prime} has a fractional perfect matching, it follows from Proposition 1 that there is a partition $\left\{V_{1}, V_{2}, \cdots, V_{t}\right\}$ of the vertex set of $V\left(G_{1}^{\prime}\right)$ such that, for each i, the graph $G_{1}^{\prime}\left[V_{i}\right]$ is either graph K_{2} or a Hamiltonian graph on odd number of vertices. To show that $S_{n}^{2}-F$ has a fractional perfect matching, we consider the following cases according to elements α and β.
Subcase 1.1. α and β are two vertices. If α and β are two vertices of K_{2} induced by V_{i}, note that there exists a partition $\left\{V_{1}^{\prime}, V_{2}^{\prime}, \cdots, V_{t-1}^{\prime}\right\}$ of the vertex set of $V\left(G_{1}^{\prime}-\{\alpha, \beta\}\right)$ such that, $G_{1}^{\prime}-\{\alpha, \beta\}$ has a fractional perfect matching f_{1} by Proposition 1. Let $F_{i}^{\prime}=\left\{v^{\prime}\right\} \cap V\left(G_{i}\right)$ for $2 \leq i \leq n$, where v^{\prime} is external-neighbor of v. Since $\left|F_{i}^{\prime}\right| \leq 1$ and G_{i} is ($2 n-5$)-regular for $2 \leq i \leq n, G_{i}-F_{i}^{\prime}$ has a fractional perfect matching f_{i}. Thus $\left\{\left(v v^{\prime}\right)\right\}$ and $f_{1}, f_{2}, \cdots, f_{n}$ induce a fractional perfect matching of $S_{n}^{2}-F$. If α is a vertex of K_{2} induced by V_{i} and β is a vertex of K_{2} induced by V_{j}, where $i \neq j$, there exists a fractional perfect matching f_{1} in $G_{1}^{\prime}-\{\alpha, \beta, \gamma, \lambda\}$, where γ is a neighbor of α in K_{2} induced by V_{i} and λ is a neighbor of β in K_{2} induced by V_{j}. Since every vertex in G_{1} has exactly two external-neighbors in $S_{n}^{2}-G_{1}$ and these two neighbors belong to different G_{i}, where $2 \leq i \leq n$, it follows that we may select an external-neighbor for each vertex from $\{\gamma, \lambda\}$ such that they are in different G_{i} 's. Let $F_{i,}^{\prime}=\left\{\gamma^{\prime}, \lambda^{\prime}, v^{\prime}\right\} \cap V\left(G_{i}\right)$ for $2 \leq i \leq n$, where $\gamma^{\prime}, \lambda^{\prime}$ and v^{\prime} are external-neighbors of γ, λ and v, respectively. Note that $\left|F_{i}^{\prime}\right| \leq 2$ and G_{i} is $(2 n-5)$-regular, so $G_{i}-F_{i}^{\prime}$ has a fractional perfect matching f_{i}, where $2 \leq i \leq n$. Thus, $\left\{\left(\gamma \gamma^{\prime}\right),\left(\lambda \lambda^{\prime}\right),\left(\nu v^{\prime}\right)\right\}$ and $f_{1}, f_{2}, \cdots, f_{n}$ induce a fractional perfect matching of $S_{n}^{2}-F$. If α and β are two vertices of a Hamiltonian graph on odd number of vertices induced by V_{i}, then there is a fractional perfect matching f_{1} in $G_{1}^{\prime}-\{\alpha, \beta, \gamma\}$ by Proposition 1, where γ is a neighbor of α in an odd path of $G_{1}^{\prime}-\{\alpha, \beta\}$. Let $F_{i}^{\prime}=\left\{\gamma^{\prime}, v^{\prime}\right\} \cap V\left(G_{i}\right)$ for $2 \leq i \leq n$, where γ^{\prime} and v^{\prime} are external-neighbors of γ and v, respectively. Note that $\left|F_{i}^{\prime}\right| \leq 2$ and G_{i} is (2n-5)-regular, so $G_{i}-F_{i}^{\prime}$ has a fractional perfect matching f_{i}, where $2 \leq i \leq n$. Hence, $\left\{\left(\nu v^{\prime}\right),\left(\gamma \gamma^{\prime}\right)\right\}$ and $f_{1}, f_{2}, \cdots, f_{n}$ induce a fractional perfect matching of $S_{n}^{2}-F$. If α and β are two vertices of two Hamiltonian graphs on odd number of vertices induced by V_{i} and V_{j}, respectively, where $i \neq j$, then there is a fractional perfect matching f_{1} in $G_{1}-F_{1}-\{v\}$ by Lemma 1. Let $F_{i}^{\prime}=\left\{v^{\prime}\right\} \cap V\left(G_{i}\right)$ for $2 \leq i \leq n$, where v^{\prime} is external-neighbor of v. Since $\left|F_{i}^{\prime}\right| \leq 1$ and G_{i} is ($2 n-3$)-regular for $2 \leq i \leq n$, $G_{i}-F_{i}^{\prime}$ has a fractional perfect matching f_{i}. Thus, $\left\{\left(\nu v^{\prime}\right)\right\}$ and $f_{1}, f_{2}, \cdots, f_{n}$ induce a fractional perfect matching of $S_{n}^{2}-F$. If α is a vertex of K_{2} induced by V_{i} and β is a vertex of Hamiltonian graph on odd number of vertices induced by V_{j}, where $i \neq j$. There exists a fractional perfect matching f_{1} in $G_{1}^{\prime}-\{\alpha, \beta, \gamma\}$, where γ is neighbor of α in K_{2} induced by V_{i}. Note that there are two vertices γ and v in $G_{1}-F_{1}$ that are unmatched, so let $F_{i}^{\prime}=\left\{\gamma^{\prime}, v^{\prime}\right\} \cap V\left(G_{i}\right)$ for $2 \leq i \leq n$, where γ^{\prime} and v^{\prime} are external-neighbors of γ and v, respectively. Note that $\left|F_{i}^{\prime}\right| \leq 2$ and G_{i} is ($2 n-5$)-regular, so $G_{i}-F_{i}^{\prime}$ has a fractional perfect matching f_{i}, where $2 \leq i \leq n$. Thus, $\left\{\left(v v^{\prime}\right),\left(\gamma \gamma^{\prime}\right)\right\}$ and $f_{1}, f_{2}, \cdots, f_{n}$ induce a fractional perfect matching of $S_{n}^{2}-F$.
Subcase 1.2. α is a vertex and β is an edge. Let $\beta=u w$. Suppose α is a vertex of K_{2} induced by V_{i} and β is an edge of K_{2} induced by V_{i}. Without loss of generality, we assume $\alpha=u$. For $i=1$, there is a fractional perfect matching f_{1} in $G_{1}^{\prime}-\{\alpha, \beta, w\}$ by Proposition 1. Note that there are two vertices w and v in $G_{1}-F_{1}$ that are unmatched, so let $F_{i,}^{\prime}=\left\{w^{\prime}, v^{\prime}\right\} \cap V\left(G_{i}\right)$ for $2 \leq i \leq n$, where w^{\prime} and v^{\prime} are external-neighbors of w and v, respectively. For $2 \leq i \leq n$, $\left|F_{i}^{\prime}\right| \leq 2$ and G_{i} is $(2 n-5)$-regular, so $G_{i}-F_{i}^{\prime}$ has a fractional perfect matching f_{i}. Hence, $\left\{\left(w w^{\prime}\right),\left(v v^{\prime}\right)\right\}$ and $f_{1}, f_{2}, \cdots, f_{n}$ induce a fractional perfect matching of $S_{n}^{2}-F$. Suppose α is a vertex of K_{2} induced by V_{i}, and β is an edge of K_{2} induced by V_{j}, where $i \neq j$. Note that there exists a partition $\left\{V_{1}^{\prime}, V_{2}^{\prime}, \cdots, V_{t-2}^{\prime}\right\}$ of the vertex set of $V\left(G_{1}^{\prime}-\{\alpha, \beta, \gamma, u, w\}\right)$ such that, there is a fractional perfect matching f_{1} in $G_{1}^{\prime}-\{\alpha, \beta, \gamma, u, w\}$ by Proposition 1 , where γ is a neighbor of α in K_{2} induced by V_{i}. Since every vertex in G_{1} has exactly two neighbors outside in $S_{n}^{2}-G_{1}$; moreover, these two neighbors belong to different G_{i}, where $2 \leq i \leq n$, it follows that we may select an external-neighbor for each vertex from $\{\gamma, u, w\}$
such that they are in different G_{i} 's. Note that there are four vertices γ, u, w and v in $G_{1}-F_{1}$ that are unmatched, so let $F_{i}^{\prime}=\left\{\gamma^{\prime}, u^{\prime}, w^{\prime}, v^{\prime}\right\} \cap V\left(G_{i}\right)$ for $2 \leq i \leq n$, where $\gamma^{\prime}, u^{\prime}, w^{\prime}$ and v^{\prime} are external-neighbors of γ, u, w and v, respectively. For $2 \leq i \leq n,\left|F_{i}^{\prime}\right| \leq 2$ and G_{i} is $(2 n-5)$-regular, so $G_{i}-F_{i}^{\prime}$ has a fractional perfect matching f_{i} for $2 \leq i \leq n$. Hence, $\left\{\left(\gamma \gamma^{\prime}\right),\left(u u^{\prime}\right),\left(w w^{\prime}\right),\left(v v^{\prime}\right)\right\}$ and $f_{1}, f_{2}, \cdots, f_{n}$ induce a fractional perfect matching of $S_{n}^{2}-F$. Suppose vertex α and edge β are of a Hamiltonian graph on odd number of vertices induced by V_{i}. There exists a fractional perfect matching f_{1} missing at most two vertices x and y in $G_{1}^{\prime}-\{x, y, \alpha, \beta\}$, where x and y are two vertices of a Hamiltonian graph on odd number of vertices induced by V_{i}. We may select an external-neighbor for each vertex from $\{x, y\}$ such that they are in different G_{i} 's, where $2 \leq i \leq n$. Let $F_{i}^{\prime}=\left\{x^{\prime}, y^{\prime}, v^{\prime}\right\} \cap V\left(G_{i}\right)$ for $2 \leq i \leq n$, where x^{\prime}, y^{\prime} and v^{\prime} are external-neighbors of x, y and v, respectively. For $2 \leq i \leq n,\left|F_{i}^{\prime}\right| \leq 2$ and G_{i} is $(2 n-5)$-regular, so $G_{i}-F_{i}^{\prime}$ has a fractional perfect matching f_{i}. Hence, $\left\{\left(x x^{\prime}\right),\left(y y^{\prime}\right),\left(v v^{\prime}\right)\right\}$ and $f_{1}, f_{2}, \cdots, f_{n}$ induce a fractional perfect matching of $S_{n}^{2}-F$. Suppose α is a vertex of K_{2} induced by V_{i} and β is an edge of a Hamiltonian graph on odd number of vertices induced by V_{j}, where $i \neq j$. Note that $G_{1}^{\prime}-\{\alpha, \beta, \gamma, u\}$ has a fractional perfect matching f_{1}, where γ is a neighbor of α in K_{2} induced by V_{i} and vertex u is incident with β in the Hamiltonian graph on odd number of vertices induced by V_{j}. Since every vertex in G_{1} has exactly two neighbors outside in $S_{n}^{2}-G_{1}$; moreover, these two neighbors belong to different G_{i}, where $2 \leq i \leq n$, it follows that we may select an external-neighbor for each vertex from $\{\gamma, u\}$ such that they are in different G_{i} 's. Note that there are three vertices γ, u and v in $G_{1}-F_{1}$ that are unmatched, so let $F_{i}^{\prime}=\left\{\gamma^{\prime}, u^{\prime}, v^{\prime}\right\} \cap V\left(G_{i}\right)$ for $2 \leq i \leq n$, where $\gamma^{\prime}, u^{\prime}$ and v^{\prime} are external-neighbors of γ, u and v, respectively. For $2 \leq i \leq n,\left|F_{i}^{\prime}\right| \leq 2$ and G_{i} is ($2 n-5$)-regular, so $G_{i}-F_{i}^{\prime}$ has a fractional perfect matching f_{i}. Thus, $\left\{\left(\gamma \gamma^{\prime}\right),\left(u u^{\prime}\right),\left(v v^{\prime}\right)\right\}$ and $f_{1}, f_{2}, \cdots, f_{n}$ induce a fractional perfect matching of $S_{n}^{2}-F$. Suppose α is a vertex of a Hamiltonian graph on odd number of vertices induced by V_{i} and β is an edge of K_{2} induced by V_{j}, where $i \neq j$. Note that $G_{1}^{\prime}-\{\alpha, \beta, u, w\}$ has a fractional perfect matching f_{1}, where u and w are incident with β. We may select an external-neighbor for each vertex from $\{u, w\}$ such that they are in different G_{i} 's, where $2 \leq i \leq n$. Let $F_{i}^{\prime}=\left\{u^{\prime}, w^{\prime}, v^{\prime}\right\} \cap V\left(G_{i}\right)$ for $2 \leq i \leq n$, where u^{\prime}, w^{\prime} and v^{\prime} are external-neighbors of u, w and v, respectively. For $2 \leq i \leq n,\left|F_{i}^{\prime}\right| \leq 2$ and G_{i} is $(2 n-5)$-regular, so $G_{i}-F_{i}^{\prime}$ has a fractional perfect matching f_{i}. Thus, $\left\{\left(u u^{\prime}\right),\left(w w^{\prime}\right),\left(v v^{\prime}\right)\right\}$ and $f_{1}, f_{2}, \cdots, f_{n}$ induce a fractional perfect matching of $S_{n}^{2}-F$.
Subcase 1.3. α and β are two edges. Let $\alpha=x y$ and $\beta=u w$. Suppose α is an edge of K_{2} induced by V_{i} and β is an edge of K_{2} induced by V_{j}, where $i \neq j$. There is a fractional perfect matching f_{1} in $G_{1}^{\prime}-\{\alpha, \beta, x, y, u, w\}$ by Proposition 1 , where x and y are incident with α, and u and w are incident with β. Every vertex in G_{1} has exactly two neighbors outside in $S_{n}^{2}-G_{1}$; moreover, these two neighbors belong to different G_{i}, where $2 \leq i \leq n$. So we may select an external-neighbor for each vertex from $\{x, y, u, w\}$ such that they are in different G_{i} 's. Let $F_{i}^{\prime}=\left\{x^{\prime}, y^{\prime}, u^{\prime}, w^{\prime}, v^{\prime}\right\} \cap V\left(G_{i}\right)$ for $2 \leq i \leq n$, where $x^{\prime}, y^{\prime}, u^{\prime}, w^{\prime}$ and v^{\prime} are external-neighbors of x, y, u, w and v, respectively. For $2 \leq i \leq n$, since $\left|F_{i}^{\prime}\right| \leq 2$ and G_{i} is $(2 n-5)$-regular, it follows that $G_{i}-F_{i}^{\prime}$ has a fractional perfect matching f_{i}. Therefore, $\left\{\left(x x^{\prime}\right),\left(y y^{\prime}\right),\left(u u^{\prime}\right),\left(w w^{\prime}\right),\left(v v^{\prime}\right)\right\}$ and $f_{1}, f_{2}, \cdots, f_{n}$ induce a fractional perfect matching of $S_{n}^{2}-F$. Suppose edge α and edge β are of a Hamiltonian graph on odd number of vertices induced by V_{i}. There is a fractional perfect matching f_{1} in $G_{1}^{\prime}-\{\alpha, \beta\}$ missing vertex k. Note that there are two vertices k and v in $G_{1}-F_{1}$ that are unmatched, so let $F_{i}^{\prime}=\left\{k^{\prime}, v^{\prime}\right\} \cap V\left(G_{i}\right)$ for $2 \leq i \leq n$, where k^{\prime} and v^{\prime} are external-neighbors of k and v, respectively. For $2 \leq i \leq n,\left|F_{i}^{\prime}\right| \leq 2$ and G_{i} is $(2 n-5)$-regular. So $G_{i}-F_{i}^{\prime}$ has a fractional perfect matching f_{i} for $2 \leq i \leq n$. Thus, $\left\{\left(k k^{\prime}\right),\left(\nu v^{\prime}\right)\right\}$ and $f_{1}, f_{2}, \cdots, f_{n}$ induce a fractional perfect matching of $S_{n}^{2}-F$. Suppose α is an edge of K_{2} induced by V_{i} and β is an edge Hamiltonian graph on odd number of vertices induced by V_{j}, where $i \neq j$. There exists a fractional perfect matching f_{1} in $G_{1}^{\prime}-\{\alpha, \beta, x, y, u\}$, where x and y are incident with α and u is incident with β. Every vertex in G_{1} has exactly two neighbors outside in $S_{n}^{2}-G_{1}$; moreover, these two neighbors belong to different G_{i}, where $2 \leq i \leq n$. So we may select an external-neighbor for each vertex from $\{x, y, u\}$ such that they are in different G_{i} 's. Let $F_{i}^{\prime}=\left\{x^{\prime}, y^{\prime}, u^{\prime}, v^{\prime}\right\} \cap V\left(G_{i}\right)$ for $2 \leq i \leq n$, where $x^{\prime}, y^{\prime}, u^{\prime}$ and v^{\prime} are external-neighbors of x, y, u and v, respectively. For $2 \leq i \leq n,\left|F_{i}^{\prime}\right| \leq 2$ and G_{i} is $(2 n-5)$-regular. So $G_{i}-F_{i}^{\prime}$ has a fractional perfect matching f_{i} for $2 \leq i \leq n$. Therefore, $\left\{\left(x x^{\prime}\right),\left(y y^{\prime}\right),\left(u u^{\prime}\right),\left(v v^{\prime}\right)\right\}$ and $f_{1}, f_{2}, \cdots, f_{n}$ induce a fractional perfect matching of $S_{n}^{2}-F$.
Case 2. $\left|F_{1}\right|=2 n-4$. Clearly, $\left|F_{i}\right| \leq 1$ for $2 \leq i \leq n$. Let $F_{1}^{\prime}=F_{1}-\{\alpha\}$, where $\alpha \in F_{1}$. Since G_{1} is fractional strongly super matched, it follows that either graph $G_{1}-F_{1}^{\prime}$ has a fractional perfect matching or F_{1}^{\prime} is a trivial FSMP set. If $G_{1}-F_{1}^{\prime}$ has a fractional perfect matching, we consider to delete element α from $G_{1}-F_{1}^{\prime}$ and construct a fractional perfect matching of $S_{n}^{2}-F$. If F_{1}^{\prime} is a trivial FSMP set of G_{1} and v is an isolated vertex of $G_{1}-F_{1}^{\prime}$, then $G_{1}^{\prime}=G_{1}-F_{1}^{\prime}-\{v\}$ has fractional perfect matching by Lemma 1. Similarly, we consider to delete elements α and v from $G_{1}-F_{1}^{\prime}$ and construct a fractional perfect matching of $S_{n}^{2}-F$. Compared with the case that F_{1}^{\prime} is a trivial FSMP set of G_{1}, the case that $G_{1}-F_{1}^{\prime}$ has a fractional perfect matching is easy and clear to construct a fractional perfect matching of $S_{n}^{2}-F$. Therefore we consider the difficult case that F_{1}^{\prime} is a trivial FSMP set of G_{1}. We can easily see that it is possible that $v=\alpha$. If $v=\alpha$, we only consider to delete element α from $G_{1}-F_{1}^{\prime}$ and this is easier to construct a fractional perfect matching than deleting elements α and v from $G_{1}-F_{1}^{\prime}$. So we only consider the case deleting elements α and v from $G_{1}-F_{1}^{\prime}$ in the following. Since G_{1}^{\prime} has a fractional perfect matching, it follows from Proposition 1 that there is a partition $\left\{V_{1}, V_{2}, \cdots, V_{t}\right\}$ of the vertex set of $V\left(G_{1}^{\prime}\right)$ such that, for each i, the graph $G_{1}^{\prime}\left[V_{i}\right]$ is either graph K_{2} or a Hamiltonian graph on odd number of vertices. To show that $S_{n}^{2}-F$ has a fractional perfect matching, we consider the following cases according to element α.

Subcase 2.1. α is a vertex. Suppose α is a vertex of K_{2} induced by V_{i}. Note that there exists a partition $\left\{V_{1}^{\prime}, V_{2}^{\prime}, \cdots, V_{t-1}^{\prime}\right\}$ of the vertex set of $V\left(G_{1}^{\prime}-\{\alpha, \gamma\}\right)$ such that, for each i, the graph $\left(G_{1}^{\prime}-\{\alpha, \gamma\}\right)\left[V_{i}\right]$ is either graph K_{2} or a Hamiltonian graph on odd number of vertices by Proposition 1, where γ is a neighbor of α in K_{2} induced by V_{i}. There is a fractional perfect matching f_{1} in $G_{1}^{\prime}-\{\alpha, \gamma\}$ by Proposition 1. Note that there are two vertices γ and v in $G_{1}-F_{1}$ that are unmatched, so let $F_{i}^{\prime}=\left(\left\{\gamma^{\prime}, v^{\prime}\right\} \cap V\left(G_{i}\right)\right) \cup F_{i}$, where γ^{\prime} and v^{\prime} are external-neighbors of γ and v in different G_{i} 's, respectively. Note that $\left|F_{i}^{\prime}\right| \leq 2$ and G_{i} is $(2 n-5)$-regular, so $G_{i}-F_{i}^{\prime}$ has a fractional perfect matching f_{i}, where $2 \leq i \leq n$. Hence, $\left\{\left(\gamma \gamma^{\prime}\right)\right.$, ($\left.\left.v v^{\prime}\right)\right\}$ and $f_{1}, f_{2}, \cdots, f_{n}$ induce a fractional perfect matching of $S_{n}^{2}-F$. Suppose α is a vertex of a Hamiltonian graph on odd number of vertices. It is obvious that $G_{1}-F_{1}-\{v\}$ has a fractional perfect matching f_{1}. Note that there is one vertex v in $G_{1}-F_{1}$ that is unmatched, so let $F_{i}^{\prime}=\left(\left\{v^{\prime}\right\} \cap V\left(G_{i}\right)\right) \cup F_{i}$ for $2 \leq i \leq n$, where v^{\prime} is external-neighbor of v. This facts imply that vertex v can be matched to vertex v^{\prime}. Since $\left|F_{i}^{\prime}\right| \leq 2$ and G_{i} is $(2 n-5)$-regular for $2 \leq i \leq n, G_{i}-F_{i}^{\prime}$ has a fractional perfect matching f_{i}. Thus, $\left\{\left(\nu v^{\prime}\right)\right\}$ and $f_{1}, f_{2}, \cdots, f_{n}$ induce a fractional perfect matching of $S_{n}^{2}-F$.
Subcase 2.2. α is an edge. Let $\alpha=u w$. Suppose α is an edge of K_{2} induced by V_{i}. Note that there exists a partition $\left\{V_{1}^{\prime}, V_{2}^{\prime}, \cdots, V_{t-1}^{\prime}\right\}$ of the vertex set of $V\left(G_{1}^{\prime}-\{\alpha, u, w\}\right)$ such that, for each i, the graph $\left(G_{1}^{\prime}-\{\alpha, u, w\}\right)\left[V_{i}\right]$ is either graph K_{2} or a Hamiltonian graph on odd number of vertices by Proposition 1. For $i=1$, there is a fractional perfect matching f_{1} in $G_{1}^{\prime}-\{\alpha, u, w\}$ by Proposition 1. For $2 \leq i \leq n,\left|F_{i}\right| \leq 1$. Every vertex in G_{1} has exactly two neighbors outside in $S_{n}^{2}-G_{1} ;$ moreover, these two neighbors belong to different G_{i}, where $2 \leq i \leq n$. So we may select an external-neighbor for each, vertex from $\{u, w, v\}$ such that they are in different G_{i} 's. Let $F_{i}^{\prime}=\left(\left\{u^{\prime}, w^{\prime}, v^{\prime}\right\} \cap V\left(G_{i}\right)\right) \cup F_{i}$ for $2 \leq i \leq n$, where u^{\prime}, w^{\prime} and v^{\prime} are external-neighbors of u, w and v in different G_{i} 's, respectively. Note that $\left|F_{i}^{\prime}\right| \leq 2$ and G_{i} is (2n-5)-regular, so $G_{i}-F_{i}^{\prime}$ has a fractional perfect matching f_{i}, where $2 \leq i \leq n$. Thus, $\left\{\left(u u^{\prime}\right),\left(w w^{\prime}\right),\left(v v^{\prime}\right)\right\}$ and $f_{1}, f_{2}, \cdots, f_{n}$ induce a fractional perfect matching of $S_{n}^{2}-F$. Suppose α is an edge of a Hamiltonian graph on odd number of vertices. It is obvious that there exists a Hamiltonian path $V_{i}-\{u\}$ on even number of vertices. Note that there exists a partition $\left\{V_{1}^{\prime}, V_{2}^{\prime}, \cdots, V_{m}^{\prime}\right\}$ of the vertex set of $V\left(G_{1}^{\prime}-\{\alpha, u\}\right)$ such that, for each i, the graph $\left(G_{1}^{\prime}-\{\alpha, u\}\right)\left[V_{i}\right]$ is either graph K_{2} or a Hamiltonian graph on odd number of vertices by Proposition 1. For $i=1$, there is a fractional perfect matching f_{1} in $G_{1}^{\prime}-\{\alpha, u\}$ by Proposition 1. Let $F_{i}^{\prime}=\left\{u^{\prime}, v^{\prime}\right\} \cap V\left(G_{i}\right)$, where u^{\prime} and v^{\prime} are external-neighbors of u and v in different G_{i} 's, respectively. Note that $\left|F_{i}^{\prime}\right| \leq 2$ and G_{i} is $(2 n-5)$-regular, so $G_{i}-F_{i}^{\prime}$ has a fractional perfect matching f_{i}, where $2 \leq i \leq n$. Hence, $\left\{\left(u u^{\prime}\right),\left(v v^{\prime}\right)\right\}$ and $f_{1}, f_{2}, \cdots, f_{n}$ induce a fractional perfect matching of $S_{n}^{2}-F$.
Case 3. $\left|F_{1}\right|=2 n-5$. Clearly, $\left|F_{i}\right| \leq 2$ for $2 \leq i \leq n$. G_{1} is fractional strongly super matched, which implies that either graph $G_{1}-F_{1}$ has a fractional perfect matching or F_{1} is a trivial FSMP set. Suppose $G_{1}-F_{1}$ has a fractional perfect matching f_{1}. For $2 \leq i \leq n$, note that $\left|F_{i}\right| \leq 2$ and G_{i} is $(2 n-5)$-regular, so $G_{i}-F_{i}$ has a fractional perfect matching f_{i}. Thus $f_{1}, f_{2}, \cdots, f_{n}$ induce a fractional perfect matching of $S_{n}^{2}-F$. Suppose F_{1} is a trivial FSMP set and v is isolated vertex of $G_{1}-F_{1}$. For $2 \leq i \leq n,\left|F_{i}\right| \leq 2$. Let $F_{i}^{\prime}=\left\{v^{\prime}\right\} \cap V\left(G_{i}\right) \cup F_{i}$, where v^{\prime} is an external-neighbor of v. Note that $\left|F_{i}^{\prime}\right| \leq 3$ and G_{i} is $(2 n-5)$-regular, so $G_{i}-F_{i}^{\prime}$ has a fractional perfect matching f_{i}. Thus, $\left\{\left(v v^{\prime}\right)\right\}$ and $f_{1}, f_{2}, \cdots, f_{n}$ induce a fractional perfect matching of $S_{n}^{2}-F$.
Case 4. $\left|F_{1}\right| \leq 2 n-5$. Furthermore, $\left|F_{i}\right| \leq 2 n-5$ for $2 \leq i \leq n$. So $G_{i}-F_{i}$ has a fractional perfect matching f_{i} for $1 \leq i \leq n$. Thus, $f_{1}, f_{2}, \cdots, f_{n}$ induce a fractional perfect matching of $S_{n}^{2}-F$.
If we can show that S_{4}^{2} is fractional strongly super matched, then we can get our desired result from Theorem 6 that S_{n}^{2} is fractional strongly super matched for $n \geq 4$. Fortunately, S_{4}^{2} is fractional strongly super matched, which will be proved in Section 3. The following theorem is the main result of this paper.
Theorem 6 Let $n \geq 4$, then $f \operatorname{smp}\left(S_{n}^{2}\right)=2 n-3$. Moreover, S_{n}^{2} is fractional strongly super matched.

3. Initial Case

We will show two initial cases. Let $G=\left(V_{G}, E_{G}\right)$ and $H=\left(V_{H}, E_{H}\right)$ be two graphs. Then their Cartesian product $G \square H$ is the graph with vertex set $V_{G} \square V_{H}=\left\{(u, v): u \in V_{G}, v \in V_{H}\right\}$, such that its vertices (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ are adjacent if and only if $u=u^{\prime}$ and $\left(v, v^{\prime}\right) \in E_{H}$, or $\left(u, u^{\prime}\right) \in E_{G}$ and $v=v^{\prime}$. In particular, $G \square K_{2}$ can be described as follows: Let G_{1} and G_{2} be two copies of G such that $u \in V\left(G_{1}\right)$ and $u^{\prime} \in V\left(G_{2}\right)$ correspond to $u \in V(G)$. Then $G \square K_{2}$ is obtained by taking G_{1} and G_{2} with the edges of the form $\left(u, u^{\prime}\right)$ for every $u \in V(G)$. We call the edges of the form ($\left.u, u^{\prime}\right)$ cross edges. Clearly $S_{n}^{2}=A_{n} \square K_{2}$. To prove the Theorem 6, we need to prove the Lemma 3 and Lemma 4. We start with the following Lemmas.
Lemma $3 f \operatorname{smp}\left(S_{4}^{2}\right)=5$.
Proof. Let $F \subseteq E\left(S_{4}^{2}\right) \cup V\left(S_{4}^{2}\right)$. Note that $S_{4}^{2}=A_{4} \square K_{2}$ is obtained by taking G_{1} and G_{2} with the edges of the form (u, u^{\prime}), where G_{i} is isomorphic to A_{4} for $1 \leq i \leq 2, u \in V\left(G_{1}\right)$ and $u^{\prime} \in V\left(G_{2}\right)$. Let $F_{1}=F \cap G_{1}$ and $F_{2}=F \cap G_{2}$. Since $f \operatorname{smp}\left(S_{4}^{2}\right) \leq f m p\left(S_{4}^{2}\right)$ and $f m p\left(S_{4}^{2}\right)=5$ by Theorem 4 , it follows that $f \operatorname{smp}\left(S_{4}^{2}\right) \leq 5$. For notational convenience, assume $\left|F_{2}\right| \leq\left|F_{1}\right|$. Now we show the claim that $f \operatorname{smp}\left(S_{4}^{2}\right) \geq 5$, that is, for any $F \subseteq E\left(S_{4}^{2}\right) \cup V\left(S_{4}^{2}\right)$ with $|F| \leq 4, S_{4}^{2}-F$ has a fractional perfect matching.

Case 1. $\left|F_{1}\right|=4$. Note that $\left|F_{2}\right|=0$. By Theorem 3, $G_{1}-F_{1}$ satisfies one of the following: (1) $G_{1}-F_{1}$ has a perfect matching; (2) $G_{1}-F_{1}$ has an almost perfect matching; (3) F_{1} is trivial SMP set and x is an isolated vertex. As we saw above, $G_{1}-F_{1}$ has at most two vertices x and y that are unmatched. So $G_{1}-F_{1}-\{x, y\}$ has a fractional perfect matching f_{1}. Let $F_{2}^{\prime}=\left\{x^{\prime}, y^{\prime}\right\} \cap V\left(G_{2}\right)$, where x^{\prime} and y^{\prime} are neighbors of x and y in G_{2}, respectively. Since $\left|F_{2}^{\prime}\right|=2$, it follows that $G_{2}-F_{2}^{\prime}$ is Hamiltonian by Theorem 1. So $G_{2}-F_{2}^{\prime}$ has a fractional perfect matching f_{2}. Thus f_{1} and f_{2} induce a fractional perfect matching of $S_{4}^{2}-F$.
Case 2. $\left|F_{1}\right|=3$. Note that $\left|F_{2}\right| \leq 1$ and G_{1} is 4-regular. Since $\operatorname{smp}\left(A_{4}\right)=4$ by Theorem 3, it follows that $G_{1}-F_{1}$ has either a perfect matching or an almost perfect matching. Assume that $G_{1}-F_{1}$ has a perfect matching $f_{1} . G_{2}-F_{2}$ is Hamiltonian by Theorem 1 , so $G_{2}-F_{2}$ has a fractional perfect matching f_{2}. Thus f_{1} and f_{2} induce a fractional perfect matching of $S_{4}^{2}-F$. We assume that $G_{1}-F_{1}$ has an almost perfect matching, that is, there exists a matching M_{1} missing a vertex u (If F contains one cross edge of between G_{1} and G_{2}, there exists a matching M_{1}^{\prime} in $G_{1}-F_{1}$ missing a vertex v such that v is not incident with the cross edge in F by Lemma 1.7). We would like to utilize the elements of M_{1} to build fractional perfect matching in $G_{1}-F_{1}-\{u\}$. By Theorem 1, $G_{2}-F_{2}-\left\{u^{\prime}\right\}$ is Hamiltonian, where $u^{\prime} \in V\left(G_{2}\right)$ and $u u^{\prime}$ is a cross edge, so $G_{2}-F_{2}-\left\{u^{\prime}\right\}$ has a fractional perfect matching f_{2}. These fact imply that vertex u can be matched to vertex u^{\prime} and then $M_{1} \cup\left\{\left(u u^{\prime}\right)\right\}$ and f_{2} induce a fractional perfect matching of $S_{4}^{2}-F$.
Case 3. $\left|F_{1}\right| \leq 2$. Clearly, $\left|F_{2}\right| \leq 2$. Since $G_{1}-F_{1}$ and $G_{2}-F_{2}$ are Hamiltonian by Theorem 1, it follows that $G_{1}-F_{1}$ and $G_{2}-F_{2}$ have fractional perfect matchings f_{1} and f_{2}, respectively. Thus, f_{1} and f_{2} induce a fractional perfect matching of $S_{4}^{2}-F$.
A standard way to view A_{4} is via its recursive structure. Let H_{i} be the subgraph of A_{4} induced by vertices where the last symbol is i, where $1 \leq i \leq 4$. Then H_{i} is isomorphic to cycle of the three vertices. Each vertex v in H_{i} has exactly two neighbors outside of H_{i}; moreover, its two neighbors belong to different H_{j} 's. We call these neighbors the externalneighbors of v. We call the edges whose end-vertices belong to different H_{j} 's cross edges. Since the H_{i} 's are defined via the 4th position, we say it is a decomposition via the 4 th position. It is easy to see that for a given pair of H_{i} and H_{j}, there are $(4-2)!=2$! cross edges between them; moreover, they are independent. We start with the following results.
Lemma 4 Every optimal FSMP set of S_{4}^{2} is trivial, that is, S_{4}^{2} is fractional strongly super matched.
Proof. Since $f \operatorname{smp}\left(S_{4}^{2}\right)=5$ by Lemma 3, it follows that we can complete the proof by showing that for any $F \subseteq$ $E\left(S_{4}^{2}\right) \cup V\left(S_{4}^{2}\right)$ with $|F|=5, S_{4}^{2}-F$ has a fractional perfect matching or $S_{4}^{2}-F$ has an isolated vertex such that F is trivial FSMP set. So we only consider the case that $S_{4}^{2}-F$ has no isolated vertices. Note that $S_{4}^{2}=A_{4} \square K_{2}$. Let $F_{1}=F \cap G_{1}$ and $F_{2}=F \cap G_{2}$. Let $H_{1 i}$ be subgraph of G_{1} induced by the set of vertices with i in the last position for $1 \leq i \leq 4$. Let $F_{1 i}$ be the element of F_{1} in $H_{1 i}$, where $1 \leq i \leq 4$. Let $H_{2 i}$ be subgraph of G_{2} induced by the set of vertices with i in the last position for $1 \leq i \leq 4$. Let $F_{2 i}$ be the element of F_{2} in $H_{2 i}$, where $1 \leq i \leq 4$. For notational convenience, assume $\left|F_{2}\right| \leq\left|F_{1}\right|,\left|F_{1 i}\right| \leq\left|F_{11}\right|$ and $\left|F_{2 i}\right| \leq\left|F_{21}\right|$, where $2 \leq i \leq 4$. Now we show that $S_{4}^{2}-F$ has a fractional perfect matching.
Case 1. $\left|F_{1}\right|=5$. Let $F_{1}^{\prime}=F_{1}-\{\alpha\}$, where $\{\alpha\} \subseteq F_{1}$. By Theorem 3, $G_{1}-F_{1}^{\prime}$ satisfies one of the following: (1) $G_{1}-F_{1}^{\prime}$ has a perfect matching; (2) $G_{1}-F_{1}^{\prime}$ has an almost perfect matching; (3) F_{1}^{\prime} is trivial SMP set, that is, $G_{1}-F_{1}^{\prime}$ has an isolated vertex x. We consider the following two possibilities according to α.
Subcase 1.1. α is a vertex. Suppose $G_{1}-F_{1}^{\prime}$ has a perfect matching. So $G_{1}-F_{1}^{\prime}-\{\alpha\}$ has a vertex γ that is unmatched, where γ is a neighbor of α in G_{1}. This implies that $G_{1}-F_{1}^{\prime}-\{\alpha, \gamma\}$ has a fractional perfect matching f_{1}. Let $F_{2}^{\prime}=\left\{\gamma^{\prime}\right\} \cap V\left(G_{2}\right)$, where where γ^{\prime} is a neighbor of γ in G_{2}. Since $\left|F_{2}^{\prime}\right|=1$, it follows that $G_{2}-F_{2}^{\prime}$ is Hamiltonian by Theorem 1, then $G_{2}-F_{2}^{\prime}$ has a fractional perfect matching f_{2}. Hence, $\left\{\left(\gamma \gamma^{\prime}\right)\right\}$ and f_{1}, f_{2} induce a fractional perfect matching of $S_{4}^{2}-F$. Suppose $G_{1}-F_{1}^{\prime}$ has an almost perfect matching and a vertex v that is unmatched. So $G_{1}-F_{1}^{\prime}-\{\alpha\}$ has two vertices γ and v that are unmatched, where γ is a neighbor of α in G_{2}. This implies that $G_{1}-F_{1}^{\prime}-\{\alpha, \gamma, v\}$ has a fractional perfect matching f_{1}. Let $F_{2}^{\prime}=\left\{\gamma^{\prime}, v^{\prime}\right\} \cap V\left(G_{2}\right)$, where γ^{\prime} is a neighbor of γ in G_{2}, v^{\prime} is a neighbor of v in G_{2}. Since $\left|F_{2}^{\prime}\right|=2$, it follows that $G_{2}-F_{2}^{\prime}$ is Hamiltonian by Theorem 1 , then $G_{2}-F_{2}^{\prime}$ has a fractional perfect matching f_{2}. Hence, $\left\{\left(\gamma \gamma^{\prime}\right),\left(v v^{\prime}\right)\right\}$ and f_{1}, f_{2} induce a fractional perfect matching of $S_{4}^{2}-F$. Suppose F^{\prime} is trivial SMP set, that is, there are at most two vertices x and y in $G_{1}-F_{1}^{\prime}$ that are unmatched. So $G_{1}-F_{1}^{\prime}-\{\alpha\}$ has at most three vertices γ, x and y that are unmatched, where γ is a neighbor of α in G_{1}. This implies that $G_{1}-F_{1}^{\prime}-\{\alpha, \gamma, x, y\}$ has a fractional perfect matching f_{1}. Let $F_{2}^{\prime}=\left\{\gamma^{\prime}, x^{\prime}, y^{\prime}\right\} \cap V\left(G_{2}\right)$, where γ^{\prime} is a neighbor of γ in G_{2}, x^{\prime} is a neighbor of x in G_{2} and y^{\prime} is a neighbor of y in G_{2}. Note that $\left|F_{2}^{\prime}\right|=3$. If F_{2}^{\prime} contains three vertices and $\left|F_{21}\right|=3, H_{2 i}-F_{2 i}$ has a fractional perfect matching $f_{2 i}$, where $2 \leq i \leq 4$. If F_{2}^{\prime} contains three vertices, $\left|F_{21}\right|=2$ and $\left|F_{22}\right|=1$, then $H_{21}-F_{21}=\{v\}$ and $H_{22}-F_{22}$ is K_{2}. Since v has two external-neighbors and v is not an isolated vertex, there is an external-neighbor v^{\prime} of v in $H_{2 i}$, where $3 \leq i \leq 4$. Without loss of generality, assume $v^{\prime} \in V\left(H_{23}\right)$. It clear that $H_{22}-F_{22}$ and $H_{23}-\left\{v^{\prime}\right\}$ have perfect matchings f_{22} and f_{23}, respectively, and H_{24} has a fractional perfect matching f_{24}. If F_{2}^{\prime} contains three vertices and $\left|F_{21}\right|=\left|F_{22}\right|=\left|F_{23}\right|=1$, then $H_{21}-F_{21}, H_{22}-F_{22}$ and $H_{23}-F_{23}$ are K_{2}, respectively. And H_{24} has a fractional perfect matching f_{24}. So $G_{2}-F_{2}^{\prime}$ has a fractional perfect matching f_{2}. Hence, $\left\{\left(\gamma \gamma^{\prime}\right),\left(x x^{\prime}\right),\left(y y^{\prime}\right)\right\}$ and f_{1}, f_{2} induce a fractional perfect matching of $S_{4}^{2}-F$.

Subcase 1.2. α is an edge. Let $\alpha=u w$. Suppose $G_{1}-F_{1}^{\prime}$ has a perfect matching. So $G_{1}-F_{1}^{\prime}-\{\alpha\}$ has at most two vertices u and w that are unmatched. This implies that $G_{1}-F_{1}^{\prime}-\{\alpha, u, w\}$ has a fractional perfect matching f_{1}. Let $F_{2}^{\prime}=\left\{u^{\prime}, w^{\prime}\right\} \cap V\left(G_{2}\right)$, where u^{\prime} is a neighbor of u in G_{2} and w^{\prime} is a neighbor of w in G_{2}. Since $\left|F_{2}^{\prime}\right|=2$, it follows that $G_{2}-F_{2}^{\prime}$ is Hamiltonian by Theorem 1. So $G_{2}-F_{2}^{\prime}$ has a fractional perfect matching f_{2}. Therefore, $\left\{\left(u u^{\prime}\right),\left(w w^{\prime}\right)\right\}$ and f_{1}, f_{2} induce a fractional perfect matching of $S_{4}^{2}-F$. Suppose $G_{1}-F_{1}^{\prime}$ has an almost perfect matching and a vertex v that is unmatched. So $G_{1}-F_{1}^{\prime}-\{\alpha\}$ has at most three vertices v, u and w that are unmatched. This implies that $G_{1}-F_{1}^{\prime}-\{\alpha, v, u, w\}$ has a fractional perfect matching f_{1}. Let $F_{2}^{\prime}=\left\{v^{\prime}, u^{\prime}, w^{\prime}\right\} \cap V\left(G_{2}\right)$, where v^{\prime} is a neighbor of v in G_{2}, u^{\prime} is a neighbor of u in G_{2} and w^{\prime} is a neighbor of w in G_{2}. Since $\left|F_{2}^{\prime}\right|=3$, it follows that $G_{2}-F_{2}^{\prime}$ has a fractional perfect matching f_{2}. Hence, $\left\{\left(u u^{\prime}\right),\left(w w^{\prime}\right),\left(v v^{\prime}\right)\right\}$ and f_{1}, f_{2} induce a fractional perfect matching of $S_{4}^{2}-F$. Suppose F_{1} is trivial SMP set, that is, there are at most two vertices x and y in $G_{1}-F_{1}^{\prime}$ that are unmatched. So $G_{1}-F_{1}^{\prime}-\{\alpha\}$ has at most four vertices x, y, u and w that are unmatched. This implies that $G_{1}-F_{1}^{\prime}-\{\alpha, x, y, u, w\}$ has a fractional perfect matching f_{1}. Let $F_{2}^{\prime}=\left\{x^{\prime}, y^{\prime}, u^{\prime}, w^{\prime}\right\} \cap V\left(G_{2}\right)$, where x^{\prime} is a neighbor of x in G_{2}, y^{\prime} is a neighbor of y in G_{2}, u^{\prime} is a neighbor of u in G_{2}, and w^{\prime} is a neighbor of w in G_{2}. Note that $\left|F_{2}^{\prime}\right|=4$ and $H_{2 i}$ is isomorphic to a cycle of three vertices, where $1 \leq i \leq 4$. If $\left|F_{21}\right|=3$ and $\left|F_{22}\right|=1$, then $H_{22}-F_{22}$ is K_{2}. So $H_{22}-F_{22}$ has a fractional perfect matching f_{22}. Clearly, $H_{2 i}-F_{2 i}$ has fractional perfect matching $f_{2 i}$, where $3 \leq i \leq 4$. So f_{22}, f_{23} and f_{24} induce a fractional perfect matching of $G_{2}-F_{2}^{\prime}$. Thus, f_{1}, f_{22}, f_{23} and f_{24} induce a fractional perfect matching of $S_{4}^{2}-F$. If $\left|F_{21}\right|=2$ and $\left|F_{22}\right|=2$, then $H_{21}-F_{21}$ is an isolated vertex x and $H_{22}-F_{22}$ is an isolated vertex y. We may select an external-neighbor for each vertex from $\{x, y\}$ such that they are in different $H_{2 i}$'s, where $3 \leq i \leq 4$, otherwise, we can decompose G_{2} by choosing a new position. Assume $x^{\prime} \in V\left(H_{23}\right)$ and $y^{\prime} \in V\left(H_{24}\right)$. Then $H_{23}-\left\{x^{\prime}\right\}$ and $H_{24}-\left\{y^{\prime}\right\}$ are two K_{2}. So $H_{23}-\left\{x^{\prime}\right\}$ and $H_{24}-\left\{y^{\prime}\right\}$ have fractional perfect matching f_{23} and f_{24}. Thus f_{1}, f_{23} and f_{24} induce a fractional perfect matching of $S_{4}^{2}-F$. If $\left|F_{21}\right|=2,\left|F_{22}\right|=1$ and $\left|F_{23}\right|=1$, then $H_{21}-F_{21}$ has an isolated vertex $x, H_{22}-F_{22}$ and $H_{23}-F_{23}$ are two K_{2}. We may select an external-neighbor of x in H_{24}, say $x^{\prime} \in V\left(H_{24}\right)$, otherwise, we can decompose G_{2} by choosing a new position. Then $H_{22}-F_{22}$ and $H_{23}-F_{23}$ has a fractional perfect matching $f_{2 i}$, where $2 \leq i \leq 3$. And $H_{24}-\left\{x^{\prime}\right\}$ has a fractional perfect matching f_{24}. Therefore, f_{1}, f_{22}, f_{23} and f_{24} induce a fractional perfect matching of $S_{4}^{2}-F$. If $\left|F_{21}\right|=\left|F_{22}\right|=\left|F_{23}\right|=\left|F_{24}\right|=1$, then $H_{2 i}-F_{2 i}$ is K_{2}, where $1 \leq i \leq 4$. So f_{21}, f_{22}, f_{23} and f_{24} induce a fractional perfect matching of $G_{2}-F_{2}^{\prime}$. Therefore, $f_{1}, f_{21}, f_{22}, f_{23}$ and f_{24} induce a fractional perfect matching of $S_{4}^{2}-F$.
Case 2. $\left|F_{1}\right|=4$. Clearly, $\left|F_{2}\right| \leq 1$. By Theorem 3, $G_{1}-F_{1}$ satisfies one of the following: (1) $G_{1}-F_{1}$ has a perfect matching; (2) $G_{1}-F_{1}$ has an almost perfect matching; (3) F_{1} is trivial SMP set and x is an isolated vertex. Suppose $G_{1}-F_{1}$ has a perfect matching, that is, $G_{1}-F_{1}$ has a fractional perfect matching f_{1}. Since $\left|F_{2}\right| \leq 1$, it follows that $G_{2}-F_{2}$ is Hamiltonian by Theorem 1, then $G_{2}-F_{2}$ has a fractional perfect matching f_{2}. Therefore, f_{1} and f_{2} induce a fractional perfect matching of $S_{4}^{2}-F$. Suppose $G_{1}-F_{1}$ has an almost perfect matching, that is, $G_{1}-F_{1}$ has a vertex v that is unmatched. So $G_{1}-F_{1}-\{v\}$ has a fractional perfect matching f_{1} by Lemma 1. Let $F_{2}^{\prime}=\left(\left\{v^{\prime}\right\} \cap V\left(G_{2}\right)\right) \cup F_{2}$, where v^{\prime} is a neighbor of v in G_{2}. Since $\left|F_{2}\right| \leq 1$, clearly, $\left|F_{2}^{\prime}\right| \leq 2$. So $G_{2}-F_{2}^{\prime}$ is Hamiltonian by Theorem 1 , then $G_{2}-F_{2}$ has a fractional perfect matching f_{2}. Thus f_{1} and f_{2} induce a fractional perfect matching of $S_{4}^{2}-F$. Suppose F_{1} is trivial SMP set and x is an isolated vertex, that is, $G_{1}-F_{1}$ has at most two vertices x and y that are unmatched. Let $F_{2}^{\prime}=\left(\left\{x^{\prime}, y^{\prime}\right\} \cap V\left(G_{2}\right)\right) \cup F_{2}$, where x^{\prime} is a neighbor of x in G_{2}, y^{\prime} is a neighbor of y in G_{2}. Since $\left|F_{2}^{\prime}\right| \leq 3 . G_{2}-F_{2}^{\prime}$ has a fractional perfect matching f_{2} by Case 1 . Thus f_{1} and f_{2} induce a fractional perfect matching of $S_{4}^{2}-F$.
Case 3. $\left|F_{1}\right|=3$ and $\left|F_{2}\right| \leq 2$. Since $G_{2}-F_{2}$ is Hamiltonian by Theorem 1, it follows that $G_{2}-F_{2}$ has a fractional perfect matching f_{2}. It follows from Theorem 3 that we only consider the case that F_{1} consists of an odd number of vertices. As we have now seen, if F_{1} contains three vertices and $\left|F_{11}\right|=3$, then $H_{1 i}-F_{1 i}$ has a fractional perfect matching $f_{1 i}$, where $2 \leq i \leq 4$. So f_{12}, f_{13}, f_{14} and f_{2} induce a fractional perfect matching of $S_{4}^{2}-F$. If F_{1} contains three vertices, $\left|F_{11}\right|=2$ and $\left|F_{12}\right|=1$, then $H_{11}-F_{11}=\{v\}$, and $H_{12}-F_{12}$ is K_{2}. Since v has two external-neighbors and v is not an isolated vertex, there is an external-neighbor v^{\prime} of v in $H_{1 i}$, where $3 \leq i \leq 4$. Without loss of generality, assume $v^{\prime} \in V\left(H_{13}\right)$. It clear that $H_{12}-F_{12}$ and $H_{13}-\left\{v^{\prime}\right\}$ have perfect matchings f_{12} and f_{13}, respectively, and H_{14} has a fractional perfect matching f_{4}. So $\left\{\left(\nu v^{\prime}\right)\right\}$ and $f_{12}, f_{13}, f_{14}, f_{2}$ induce a fractional perfect matching of $S_{4}^{2}-F$. If F_{1} contains three vertices and $\left|F_{11}\right|=\left|F_{12}\right|=\left|F_{13}\right|=1$, then $H_{11}-F_{11}, H_{12}-F_{12}$ and $H_{13}-F_{13}$ are K_{2}, respectively. $H_{1 i}-F_{1 i}$ has fractional perfect matching $f_{1 i}$, where $1 \leq i \leq 3$. And H_{14} has a fractional perfect matching f_{14}, so $f_{11}, f_{12}, f_{13}, f_{14}, f_{2}$ induce a fractional perfect matching of $S_{4}^{2}-F$. Next we consider the case that F_{1} contains one vertex and two edges. If F_{11} consists of one vertex and two edges, $H_{11}-F_{11}$ has at most two isolated vertices, say u and v. We may select an external-neighbor for each vertex from $\{u, v\}$ such that they are in different $H_{1 i}$'s, where $2 \leq i \leq 4$. For notational convenience, assume $u^{\prime} \in V\left(H_{12}\right)$ and $v^{\prime} \in V\left(H_{13}\right)$, where u^{\prime} is an external-neighbor of u in $V\left(H_{12}\right)$, v^{\prime} is an external-neighbor of v in $V\left(H_{13}\right)$. So $H_{12}-\left\{u^{\prime}\right\}$ and $H_{13}-\left\{v^{\prime}\right\}$ have fractional perfect matchings f_{12} and f_{13}, respectively. H_{14} has a fractional perfect matching f_{14}. So f_{12}, f_{13}, f_{14} and f_{2} induce a fractional perfect matching of $S_{4}^{2}-F$. If F_{11} consists of one vertex and one edge, and F_{12} contains one edge. $H_{11}-F_{11}$ has at most two isolated vertices, say u and v, and $H_{12}-F_{12}$ is a path P with three vertices. Let $P=x y z$. We can find that the external-neighbor of one of u and v is adjacent to one of x and z, otherwise, we can decompose G_{1} by choosing a new position. Without loss of generality, assume that u is adjacent to x. Note that
there is the external-neighbor v^{\prime} of v in $H_{1 i}$, where $3 \leq i \leq 4$. Assume $v^{\prime} \in V\left(H_{13}\right)$, then $H_{13}-\left\{v^{\prime}\right\}$ has a fractional perfect matching f_{13}. Clearly, H_{14} has a fractional perfect matching f_{14}. So $\left\{(u x),(y z),\left(v v^{\prime}\right)\right\}$ and f_{13}, f_{14}, f_{2} induce a fractional perfect matching of $S_{4}^{2}-F$. If F_{1} contains cross edges such that F_{11} consists of one vertex and F_{12} contains one edge, we can obtain $H_{11}-F_{11}$ has a fractional perfect matching f_{11} and $H_{12}-F_{12}$ is a path $P=u v w$ with three vertices. It obvious that we can find the external-neighbor u^{\prime} of u in $H_{1 i}$, where $3 \leq i \leq 4$. Assume $u^{\prime} \in V\left(H_{13}\right)$. Moreover, $H_{13}-\left\{u^{\prime}\right\}$ and H_{14} have fractional perfect matchings f_{13} and f_{14}, respectively. When F_{1} contains no cross edges, we can choose a new position to decompose G_{1} such that $\left|F_{12} \cap E\left(H_{12}\right)\right|=1$ and F_{11} consists of one vertex. So $\left\{\left(u u^{\prime}\right),(v w)\right\}$ and f_{11}, f_{13}, f_{14} induce a fractional perfect matching of $G_{1}-F_{1}$. Thus $\left\{\left(u u^{\prime}\right),(v w)\right\}$ and $f_{11}, f_{13}, f_{14}, f_{2}$ induce a fractional perfect matching of $S_{4}^{2}-F$.
Case 4. $\left|F_{1}\right| \leq 2$. By the Case 2 and Case $3, S_{4}^{2}-F$ has a fractional perfect matching.
Thus, we prove that every optimal FSMP set of S_{4}^{2} is trivial, that is, S_{4}^{2} is fractional strongly super matched.
With Lemma 3 and Lemma 4 proved, we immediately obtain the following result.
Theorem $7 f \operatorname{smp}\left(S_{4}^{2}\right)=5$. Moreover, S_{4}^{2} is fractional strongly super matched.

References

Birgham, R. C., Harry, F., Biolin, E. C., \& Yellen, J. (2005), Perfect matching preclusion, Congr. Numer, 174, 185-192.
Bonneville, P., Cheng, E., \& Renzi, J. (2011). Strong matching preclusion for the alternating groups and split-stars, JOIN 4, 277-298.

Cheng, E., Lesniak, L., Lipman, M. J., \& Lipták, L. (2008). Matching preclusion for alternating group graphs and their generalizations. Inter. J. Found. Comput. Sci. 19, 1413-1437.
Cheng, E., Lesniak, L., Lipman, M. J., \& Lipták, L. (2009). Conditional matching preclusion sets, Inform. Sci. 179, 1092-1101.

Cheng, E., Lipman, M. J., \& Park, H. A. (2001). Super connectivity of star graphs, alternating group graphs and split-stars, Ars Combin. 59, 107-116.
Cheng, E., \& Lipták, L. (2007). Matching preclusion for some interconnection networks, Networks, 50, 173-180.
Cheng, E., \& Siddiqui, O. (2016). Strong matching preclusion of arrangement graphs, JOIN 16, 1650004.
Day, K., \& Tripathi, A. (1992). Arrangement graphs: a class of generalized star graphs. Inf. Process. Lett, 42, 235-241.
Hsu, H. C., Li, T. K., Tan, J. J. M., \& Hsu, L. H. (2004). Fault Hamiltonicity and fault Hamiltonian connectivity of the arrangement graphs, IEEE Transactions on Computers, 53, 39C53.
Jwo, J. S., Lakshmivarahan, S., \& Dhall, S. K. (1993). A new class of interconnection networks based on the alternating group, Networks 23, 315-326.

Lin, R., \& Zhang, H. (2017). Matching preclusion and conditional edge-fault Hamiltonicity of binary de Bruijn graphs, Discrete Appl. Math. 233, 104-117.
Liu, Y., \& Liu, W. (2016). Fractional matching preclusion number of graphs, J. Comb. Optim. 34, 522-533.
Ma, T., Mao, Y., Cheng, E., \& Melekian, C. (2018). Fractional matching preclusion for (burnt) pancake graphs, I-SPAN. 00030, 133-141.
Ma, T., Mao, Y., Cheng, E., \& Wang, J. (2018). Fractional matching preclusion for (n, k)-star graphs, Parall. Process. Lett. 28, 1850017.
Mao, Y., Wang, Z., Cheng, E., \& Melekian, C. (2018). Strong matching preclusion number of graphs, Theor. Comput. Sci. 713, 11-20.

Park, J. H., \& Ihm, I. (2011). Strong Matching Preclusion,Theor. Comput. Sci. 412, 6409-6419.
Scheinerman, E. R., \& Ullman, D. H. (1997) Fractional Graph Theory: A Rational Approach to the Theory of Graphs, John Wiley, New York.

Wang, Z., Mao, Y., Cheng, E., \& Zou, J. (2019). Matching preclusion number of graphs, Theor. Comput. Sci. 759, 61-71.
Wang, Z., Melekian, C., Cheng, E., \& Mao, Y. (2019). Matching preclusion number in product graphs, Theor. Comput. Sci. 755, 38-47.

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).

[^0]: ${ }^{\text {a }}$ Supported by the National Science Foundation of China (Nos. 11601254, 11551001, and 61763041) and the Science Found of Qinghai Province (Nos. 2016-ZJ-948Q, 2014-ZJ-907 and 2017-ZJ-949Q).

