On Liouvillian Solutions of Third Order Homogeneous Linear Differential Equations
- Noura Okko
Abstract
In this article we will consider third order homogeneous differential equations: L(y)=y'''+a_1y'+a_0y(a_0,a_1 ∈k) whose Galois group G(L) is imprimitive. This case is characterised by the fact that the third symmetric power equation L ^ⓢ3(y)=0 has an exponential solution whose square is rational (Singer & Ulmer 1993). If L(y)=0 has a Liouvillian solution z whose logarithmic derivative u=z'/z is algebraic over a differential field (k,') ,we will give an algorithm to find the relation between a_0, a_1 , the semi-invariant S=Y_1Y_2Y_3 which is unique up to multiplication by a constant, the coefficients C_0, C_1 of the minimal polynomial P(u) of u and their derivatives. The aim of this work is to diminutize the number of constants C_m stated in the algorithm of Singer & Ulmer (Singer & Ulmer 1993 Algorithm p. 31) whose determination is not easy to do, and we will achieve this by using Groebner Basis.
- Full Text: PDF
- DOI:10.5539/jmr.v11n3p14
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org