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Abstract  

In this article we will consider third order homogeneous differential equations:    1 0 0 1  ,  L y y a y a y a a k      whose 

Galois group  LS is imprimitive. This case is characterised by the fact that the third symmetric power equation 

( ) 0L y  has an exponential solution whose square is rational (Singer & Ulmer 1993). If   0L y   has a Liouvillian 

solution z whose logarithmic derivative u z z  is algebraic over a differential field  ,k  ,we will give an algorithm to 

find the relation between 0 1,  a a , the semi-invariant 1 2 3S Y Y Y which is unique up to multiplication by a constant, the 

coefficients 0 1,  c c of the minimal polynomial  P U of u  and their derivatives. The aim of this work is to diminutize 

the number of constants mC  stated in the algorithm of Singer & Ulmer (Singer & Ulmer 1993 Algorithm p. 31) whose 

determination is not easy to do, and we will achieve this by using Groebner Basis.  

Keywords: differential Galois Theory, Liouvillian solutions, Groebner Basis, invariant theory, representation theory 

1. Introduction 

This section is a recall of some definitions in Differential Galois theory that we will depend on in our study. In the 

second section we will give an algorithm to find the relation between 0 1,  a a , the semi-invariant 1 2 3S Y Y Y which is 

unique up to multiplication by a constant, the coefficients 0 1,  c c of the minimal polynomial  P U of u  and their 

derivatives. The aim of this work is to diminutize the number of constants mC  stated in the algorithm of Singer & 

Ulmer (Singer & Ulmer 1993 Algorithm p. 31) whose determination is not easy to do, and we will achieve this by using 

Groebner Basis, and in the third section we will expose the codes Maple and Magma we have used for more knowledge 

about Invariant Theory refer to (Benson 1993, Cox 1992, Sturmfels 1993) 

Differential Galois theory  

Definition 1. (Singer & Ulmer 1998 p.3) A differential field  ,k  is a field k together with a derivation   in k . The 

set of all constants  ,  0C a k a    is a subfield of  ,k  .  

Definition 2. (Singer & Ulmer 1998 Defination1.1.) A differential field extension  ,  K   of  ,  k   is a Liouvillian 

extension if there is a tower of fields :  

0 1 mk K K K K      

Where 
1iK 
is a simple field extension  i iK 

 
of 

iK , such that one of the following holds:  

 
i is algebraic over 

iK ,  

  i i if K    (extension by an integral 
i if   ),  

  i i i if K     (extension by the exponential of an integral if

i e  ). 

A function contained in a Liouvillian extension of k is called a Liouvillian function over k .  

Definition 3. (Fakler 1997 p. 29) Let  ,k  be a differential field of characteristic 0  and C is its field of constants 

algebraically closed. Consider the following ordinary homogeneous linear differential equation:  

                        (1) 

 

over  ,k   with a system  1, ,  ny y of fundamental solutions. By extending the derivation   to a system of 

fundamental solutions and by adjunction of these solutions and their derivatives to  ,k   in a way the field of constants 

does not change, one gets 1, ,  nK k y y , the so-called Picard-Vessiot extension (PVE) of   0L y  . With these 

assumptions, the PVE of   0L y  always exists and is unique up to differential isomorphism. This extension plays the 
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same role for a differential equation as a splitting field for a polynomial equation.  

Definition 4. (Fakler 1997 p. 29) The set of all automorphisms of K , which fix  ,k   elementwise and commute with 

the derivation in K is a group, it is the differential Galois group    /K k LS S  of   0L y  . 

Let        1

1 1 0  0   
n n

n iL y y a y a y a y a k



       be an n th order linear diferential equation with Galois 

group    ,L GL n CS . To a basis  ,  ,  y
1

y
n of the solution space of   0L y  we associate the evaluation morphism: 

: ,  ,  
1

                      

Y Y K
n

Y y
i i

  
 

 

The value of a semi-invariant of    ,L GL n CS is its image in K under the above evaluation morphism. 

The morphism has the following properties: 

a.  restricts to a bijection between linear forms and solutions of   0L y   

b. Semi-invariants of finite order n are sent to the n th roots of elements of k . In Particular invariants are fixed 

under the action of  LS and are sent to elements of k .  

Definition 5. (Singer & Ulmer 1997 Definition 1) Let   0L y  be a homogeneous linear diferential equation of order n
and let ,  ,  y

1
y

n be a fundamental system of solutions. The differential equation ( ) 0mL y   whose solution space, 

denoted mS is spanned by monomials of degree m in ,  ,  y
1

y
n is called the m th  symmetric power of   0L y  . 

An algorithm to construct ( ) 0mL y  is given in (Singer 1980).The value of a semi-invariant of degree m and order
j is an j th root of a solution of ( ) 0mL y  (Singer & Ulmer 1993 Lemma 1.6.).  

Definition 6. (Singer & Ulmer 1997 p.2) Let        2

2 1 0  0    
n n

n iL y y a y a y a y a k



       be a linear differential 

equation of order n over k . A solution of  1 in k  is a rational solution, a solution in an algebraic extension of k  

is an algebraic solution, , a solution whose logarithmic derivative is in k  is an exponential solution, , a solution 

belonging to a field obtained from k  by successive adjunction of exponentials, integrals and algebraic functions is a 

Liouvillian solution. 

Definition 7. ( Ulmer 1994. P.3) Let  G GL V  be a linear group acting irreducibly on the vector space V of dimension 

n  over C . Then G  is said to be imprimitive if there exist subspaces  ,  ,  
1

V V
d with 1d such that  

1
V V V

d
  

and, for each G  , the mapping  V V
i i

  is a permutation of the set  ,  ,  
1

A V V
d

 The set A  is called a system of 

imprimitivity of G . If all the subspaces V
i are of one dimension, then G  is called monomial. An irreducible group 

 G GL V which is not imprimitive is called primitive. 

for more knowledge about Differential Galois theory refer to Magid 1994, Kolchin 1948.  

2. Algorithm to Diminutize the Number of Constants mC  Stated in the Algorithm of Singer & Ulmer 1993  

In this section we will consider linear ordinary differential equations of third order the form:

   1 0 0 1  ,  SLL y y a y a y a a k      without losing the Liouvillian character of the solutions (Kolchin 1948, p.184, 

OKKO 2018 Remark. P. 51), whose Galois group  LS is imprimitive. This case is characterised by the fact that the third 

symmetric power ( ) 0L y  has an exponential solution whose square is rational or equivalently it has a 

semi-invariant of degree 3 and of order 2  exists (cf. Singer & Ulmer 1993 Theorem 4.6). If   0L y   has a 

Liouvillian solution z  whose logarithmic derivative u z z  is algebraic over a differential field  ,k   , we will 

give an algorithm to find the coefficients of the minimal polynomial  P U of u  in terms of 0 1,  a a , the semi-invariant 

1 2 3S Y Y Y which is unique up to multiplication by a constant, and their derivatives by using Groebner Basis. Befor this we 

will introduce a lemma (Ulmer 2003, Lemma 3.1). ) and recall it.  

Let 1,0 , 1, ,m m nZ ZR k 
 
   be the polynomial ring in nm variables. We will take the same notations of Felix Ulmer in 

(Ulmer 2003) : 
1, , mi i

W  denotes for the monic polynomial corresponding to  
 

 
 

 
 1 2

1 2
m

m

i i i

mm
S

Z Z Z R
  



  

for integers 1 2 0mn i i i    . Let 1 2 m mS Z Z Z R   and  
, ,

j
S S the first j derivatives of  

S , then S , its derivatives and the 1

1

m n
N

n

  
  

 

 polynomials  
1, , m mi i

W R are related by a matrix 
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  , 1jA k j N    : 

 

0, , 0

1,0, , 0

1, , -1

j

j
n n

S W

S W
A

WS 

   
   
   
   
     

    

The theorem 3 and its proof in (Singer & Ulmer 1997. ) show that if g K is an exponential solution of ( ) 0mL y  and 

 
1 , , mz zg S , for m and 1

,  , mz z are m  solutions ,different from zero, of the equation   0SLL y  . 

Then for all polynomial    P U K U : 

     1

1 1

1 2 1 2 1
m m

mm m

i i

i m m iz z z z z z z zP U U U 
 

 

   
 

   
 
 

                  

       
1 1 1

1

, , 0, , 0 , , 1,0, , 0 , , 1, , 11
m m m

mm m

z z z z z zW U W U W     
 

the polynomial : 

 
 

1

m

i iz

P U
Q U





  

is in the ring  K U . And in this case all roots iu  of  Q U give Liouvillian solutions iu

e  of 

   2 1 0 0 1 2  ,  ,  L y y a y a y a y a a a k       ( cf. Remark. OKKO 2018). 

Lemma 3.1. (Ulmer F. 2003, Lemma 3:1). For a third order linear differential equation   1 0L y y a y a y    over 

k the order of ( ) 0L y  is 7, 9 or 10. The order of ( ) 0L y  is 7 if and only if 0 12a a . In this case 

(y) ( )L L y where 1(y)
4

a
L y y  . 

Proof: Let m be the S-morphism obtained by restriction of the evaluation morphism   to the vector space of 

homogeneous forms of degree m of 1 2 3, , C Y Y Y
 
  

(Singer & Ulmer 1993 Lemma 3.5). Because 1 is a bijection, 

(Lemma 3.5 (4) in Singer & Ulmer 1993) implies that the kernel of 2 is at most of dimension 1, i.e. ( ) 0L y   is of 

order at least 5. If 2 is a bijection, then (Lemma 3.5 (4) in Singer & Ulmer 1993) implies that ( ) 0L y   is of order 9 

or 10. Suppose now that the kernel of 2 is of dimension 1 and generated by 2
,  ,  

1 2 3
C Y Y YF  
  . Note that 2F must be 

irreducible since otherwise 1  is not a bijection. The homogeneous polynomials of degree 3 divisible by 2F

correspond to the C  Span of 1 2 2 2,  Y F Y F and 3 2Y F  are in the kernel of 3 , showing ( ) 0L y   is of order 7 . If 

( ) 0L y   is of order 6 , it must exist a polynomial 3 1 2 3
, , C Y Y YF  

 
 

 in the kernel of 3 which is not a multiple of 

2F . If 2F or 3F is of degree zero in 3Y , then we get a non constant homogeneous polynomial 1 2
, Y YF C

 
 
 

 whose 

evaluation via  is zero. Since F is homogeneous and C is algebraically closed, F factors as a product of linear 

forms  1 2i ii
Y Y  .The evaluation via  gives a linear relation between the basis elements 1 2,y y and thus a 

contradiction. Denote 2,3 1 2
, Y YF C

 
 
 

 the resultant of 
2

F  and 3
F  with respect to 3

Y .Since 
2

F and 3
F  are relatively 

prime and are both of degree 1 in 3
Y , we get that 2,3 1 2

, Y YF C
 
 
 

 is homogeneous of degree 1 . Arguing as above 

with F , we get a contradiction. Thus ( ) 0L y   is of order 7 in this case. This proves the first assertion.We want to 

characterise the fact That ( ) 0L y   is of order 7 or equivalently that ( ) 0L y  is of order 5. This has been 

done(Singer 1985) Lemma 3.4, but we will give a proof using the introduced formalism. According to section 2.1 we 

have that ( ) 0L y   is of order 5  if and only if the matrix 5A is not invertible (i.e.if and only if 

   
5

,  ,1 2 3 1 2 3Z Z Z Z Z Z are linearly dependent). Performing a fraction free Gaussian elimination on the matrix  5

t
A we 

get: 
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0 0 1 0 0

2

1 0 1 0 1 1

1 1 0

1

1 0

1 0 0 2 2 2 2

0 1 0 5 7

0 0 2 0 8 10 10

0 0 0 6 0 30

0 0 0 0 36 0

0 0 0 0 0 108 2

a a a a a

a a a a a a

a a a

a

a a

    
        
 

   
 

 
 
 

     

Therefore ( ) 0L y   is of order 7 if and only if 1 02a a  .A direct computation shows that in this case   ( )L y L y . 

Now we will give an algorithm to find the coefficient of  P U in terms of 0 1,  a a , the semi-invariant 1 2 3S Y Y Y and 

their derivatives : 

The Algorithm: 

 Write S and its derivatives in terms of the polynomials , ,i j kw , the coefficients 1 0,  a a  and their derivatives 

(see section 3. , NormalForm1 and NormalForm2 procedures).  

 Calculate Groebner Basis  GR  of the ideal 
 9

0,0,0 0 1,1,1 1 1,1,0,  , ,  ,   I S w S c w c w    

 

0,0,0 1,0,0 2,0,0 1,1,0 2,1,0 1,1,1 2,2,0 2,1,1 2,2,1 2,2,2 0,0

9

1,0 0,1 0,6 1,6 0 1

,  ,  ,  ,  ,  ,  ,  ,  ,  ,  

, , ,  ,   ,  ,  ,  , ,  ,  ,  

R k w w w w w w w w w w a

a a a a S S S S c c

  

  
 

such that the order on the ring R is the elimination order on the first 10 variables, so we can find relations between 

1 0,  ,  ,s a a their derivatives and the coefficients 1 1 2 3 1 2 3 1 2 3,c z z z z z z z z z         

0 31 2c z z z      of (U)P in the ring 
 9

,  ,  , ,  S S S Sk     (see section 3. , 1 0,  ,  s a a and their derivatives 

procedure). After calculating Groebner Basis  GR we find that its latest six elements have only the variables 

0 1,  , s a a  , their derivatives and the coefficients 0 1, c c . 

 Eliminate one more time the coefficient 0c considred as a variable in the ring   6

0 10 0 11 0,  ,, ,  ,  , , ,k a a ac ac a 
   96

1 ,  , ,  , ,  s s sa s


    by calculating Groebner Basis Gr of the ideal 16 21,  , id GR GR  

(see section 3, eliminate 0c ). So we obtain a relation between the variables    9 6

0 0 0,  ,, , ,   ,, , a a aS S S 
 6

1 1 1,  ,,  , a a a  and 1c . 

 We determin the value of 1c  with Maple. We substitute this value in the element of Groebner Basis 

Gr which contains 1 0, ,  S a a , their derivatives and the coefficients 0 1, c c  in order to express 0c in terms of 

1 0, ,  S a a and their derivatives. In reality, the element Gr we speak about is 4Gr , whatever the order of the symmetric 

equation 3(y) 0L  is 7,  9  or 10 . 

2 2 3 2 2 2 3

4 0 0 1 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0

7 2 43 1 1 1
 

9 3 20 4 30 3
Gr c a a c a c a a a a S a a a S a a a S a a S            

 

          

3 3 2 2

0 1 1 0 1 0 1 0 0 0 0 0 0 1 0

2 2

0 0 1 0

3 2

0 0 1 0 0 10 1 0

1 63 1 23 11 13 17

4 20 4 144 240 48 8

111 5 17

8

0

67 1

0 12 24

69

54 144

a a S c a c a

a

a a a a S a a S a a a S

a a S a a S a a a S a a a S a aS S

          

         
 

          

     4 4 52 2

1 0 0 1 1 0 0 1 0 0 0 0 0 0

49 49 1 1 1 1

108 144 9 12 36 48
a a S a a S c a a c a a a a S a a S           

 

          

 42 2

0 0 1 0 0 1 1 0 0

1 49 49 1

6 108 144 9
a a S a a S a a S c a a          

 

          

 4 2

0 0 0 0 0 0 0

7 4 11 14

48 9 24 27
a a S a a S a a S a S          

 

          

     4 5 52

0 0 0 0 0 1 0

2 5 7 7 7

3 6 2 4 4 0 5 4
a a S a a S a S a a S         
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     6 7 8

0 1 0 0

7 1 1

72 108 144
a a S a S a S  

 

Examples.  

   0L y 3  is of order 7 .  

Example1. Take the equation : 

   

3 2 3 2

2 33 2 3

32 27 27 64 81 135 54
( )

36 1 72 1

d y x x dy x x x
L y y

dx dxx x x x

    
  

   
whose symmetric power ( ) 0L y  is of order 7 . The  vector space of Liouvillian solutions of ( ) 0L y   is 

generated by only one solution 4 3 2-2 +s x x x . By using our algorithm, we obtain the coefficients of the minimal 

polynomial  P U :  

4 3 2

3 = -2 +c s x x x
 

3 2

2 = 4 6 2c s x x x   
 
11 10 9

1 25313961574400 122936959713280 369414924755712c x x x  
                          

        
8 7 6759762796466484 1160223530219379 1352965374477072x x x     

        
5 4 31190804183867628 779912777349666 353889936963693x x x    

         
2 941822280936

95718851436546 11393791055748 21010579456
108

x x x  
        

        
8 7 6 579774543872 234889910208 435358558917 634598874729x x x x     

        

4 3 2673422918633 +534201757263 298530368262 96095161620

12699314136

x x x x  

  
12 11 10

0 40936268627968 221509596151808 669402865431552c x x x  
 

         
9 8 71391212752866640 2084599015102737 2335386769620696x x x    

          
6 5 41894909901929902 1033536296671596 +272124855869121x x x   

          
3 284555330577452 101906800574184 +33293137560192x x x                     

         
  3 23816809262000

-1 64 81 +135 54
216

x x x x x    6328290304x
 

         
5 4 3 2830984832 1925952309 2335090518 2196559377x x x x     

         1191608820 235172484x 
 

   0L y 3  is of order 9 .   

Example2. Take the equation: 

   

3 2 2

23 2 2

8 3 3264 2452 729
( )

1 108 1

d y x d y x x dy
L y

dx x x dx dxx x

  
  

 
 

                               
 

3 2

33

71280 80410 47466 10935

1458 1

x x x
y

x x

  



 

(example 4.5 in Ulmer 2003.) that can be transferred to the equation:  

   

3 2 3 2

3 2 32 3

96 76 81 2592 3068 5400 2187
( )

108 1 2916 1
SL

d y x x dy x x x
L y y

dxdx x x x x

    
  

 

 

by using procedure transfereL with Maple program (Okko 2018). The equation  SLL y  is irreducible, its differential 

Galois group is 162G  and its third symmetric power  3 0L y   is of order 9 . The value of the semi-invariant is 

 
5 31s x x   whose square is rational and it generates the vector space of Liouvillian solutins of ( ) 0L y  . By 
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using our algorithm we obtain the coefficients of the minimal polynomial  P U : 

 
5 3

3= 1c s x x 
 

   
3 53

2

5 3
= 1 1

2 2
c s x x x x    

 

 12 11 10

1

1
27680816981606400 146369305291456512 460721269652889600

432
c x x x  

 

       
9 8 71009013808719533056 1645470628884383488 2078192403916191552x x x    

       
6 5 42032861092998975552 1522715003967278160 839232768599394624x x x    

       
3 2307532640935458044 62289431318500884 4200887273556699x x x    

       
  9 8231958332276525 1 5743767158784 20393922244608x x x x  

       

       7 6 5 60302794885632 109841060253248 161225407720576x x x    

     
4 3 2171833666743152 138087079432992 79030988627868 25962912325800 3471675001929x x x x      

 12 11 10

0

1
1208622863106441216 5620819173370232832 +15699354875538112512

23328
c x x x 

 

          
9 8 730138292242681495552 41327897457410536960 42973740430560205568x x x    

          
6 5 4+32763357563840003520 18873014663604337920 +8966085528248791344x x x  

          
3 23863141918254277136 +1563648342203575476 500362208768814480x x x   

      
 3 9 8 +79072079758122051 1 5743767158784 20393922244608x x x x 

 

       
7 660302794885632 109841060253248x x   

       
5 4 3 2161225407720576 171833666743152 138087079432992 79030988627868x x x x           

       25962912325800 3471675001929x 
 

   0L y 3  is of order 10 .  

Example3. Let’s take the equation (example 4.9 in Ulmer 2003):  

 

 
 

23 2

23 2 2

2 138 115 77 3
( )

1 27 1

x xd y x d y dy
L y

dx x x dx dxx x

 
  

   

 
 

2

22

10 162 28 7

729 1

x x
y

x x

 


  
It becomes as follow after using the transformation transfereL with Maple program (see transfereL Okko 2018):  

 

3 2

23 2

2 12 7 7
( )

27 1
SL

d y x x dy
L y

dx dxx x

 
 



 
 

3 2

33

324 301 525 2242

729 1

x x x
y

x x

  


  

whose third symmetric power ( ) 0L y  is of order 10, and its differential Galois group   81L GS = (example  

4.5 in Ulmer 2003 ). If  1 2 3, ,Y Y Y is a basis of the solution space of ( ) 0L y   , then the invariants subspace of degree 3 

of 81G is generated by the polynomial 1 1 2 3I Y Y Y and the 3 semi-invariants spaces are generated by the polynomials 
3 3 3

1 1 2 3 ,S Y Y Y    3 3 3 3 3

2 3 1 21 ,S Y w Y w Y     and  3 3 3 3 3

3 3 1 21 ,S Y w Y w Y     (cf. Ulmer 2003 section 4.3), w  is the 

Wronskian. 4 3 22s x x x   is an unique solution whose square is rational. By using our algorithm, we obtain the 

coefficients of the minimal polynomial  P U :  
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4 3 2

3 = -2 +c s x x x  
3 2

2 = 4 6 2c s x x x     
11 10 9

1 25313961574400 26409495661920 369414924755712c x x x    

        8 7 6 5124939714582914 172153006123784 187209130557757 156749233965863x x x x      

         4 3 2100541914181821 47033417633853 13872317475296 1989962456888x x x x      

         9 8 7 663264083456 54 11218295232 31314188304 84221681796 135184221739x x x x      

        5 4 3 2181586038333 181243862121 137006478371 78056142304 26777872800x x x x x      

       3793656832  

 12 11 10 9

0 73768485297024 333419069906784 +855218148700536 369414924755712c x x x x    

     8 7 6 52139932814242671 2227665744927448 1741090046828426 963045565711138x x x x     

     4 3 2324050153614243 1905494677324 56321850003132 22301556579456x x x x     

       6 5 4 32762481114400 / 729 34624368 64482264 143934343 155095486x x x x x     

      2 3 2138557839 79850400 +16935968 324 301 525 224x x x x x       

3. In this section we find the procedures which we have spoken about in the Algorithm (in section 2.) proposed in 

this paper.  

Code Maple  

1. 

#NormalForm1  

with(diffalg): 

with(Groebner): 

with(PolynomialIdeals): 

NormalForm1:=proc(y1,y2,y3,a0,a1) 

local x,i,s,R,R1,b0,b1; 

global y10,y20,y30,y11,y21,y31,y12,y22,y32,a00,a10,a01, 

a02,a03,a04,a05,a06; 

s:=y1(x)*y2(x)*y3(x); 

R[0]:=s; 

R1[0]:=subs([y1(x)=y10,y2(x)=y20,y3(x)=y30],R[0]); 

b0:=a0(x);b1:=a1(x); 

for i from 1 to 9 do 

if i>=3 then R[i]:=diff(R[i-1],x); 

R[i]:=subs(diff(y1(x),x$3)=b1*diff(y1(x),x)+ 

b0*y1(x),diff(y2(x),x$3)=b1*diff(y2(x),x)+b0* 

y2(x),diff(y3(x),x$3)=b1*diff(y3(x),x)+b0*y3(x), 

R[i]); 

else 

R[i]:=diff(R[i-1],x);R[i]:=subs(diff(b1,x)=2*b0,R[i]); 

fi; 

R1[i]:=subs([y1(x)=y10,y2(x)=y20,y3(x)=y30,diff(y1(x),x)=y11, 

diff(y2(x),x)=y21,diff(y3(x),x)=y31,diff(y1(x),x$2)=y12,diff (y2(x),x$2)=y22,diff(y3(x),x$2)=y32,b0=a00,b1=a10,diff 

(b0,x)=a01,diff(b0,x$2)=a02,diff(b0,x$3)=a03,diff(b0,x$ 

4)=a04,diff(b0,x$5)=a05,diff(b0,x$6)=a06],R[i]); 

od; 
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return([seq(R1[i], i= 0..9)]); 

end: 

2. 

#NormalForm2  

NormalForm2:=proc(l1,l2,order) 

local j,NF ;global x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13, 

x14,x15,x16,x17,x18,x19; 

for j from 1 to nops(l1) do 

NF[j-1]:=NormalForm(l1[j],l2,T); 

od; 

return([seq([j-1,NF[j-1]], j=1..10)]); 

end: 

T:=lexdeg([y10,y20,y30,y11,y21,y31,y12,y22,y32],[w000, 

w100,w200,w110,w111,w222,w210,w220,w211,w221]): 

B:=[w000-y10*y20*y30,w100-(y11*y20*y30+y10*y21*y30+y10*y20* 

y31),w110-(y11*y21*y30+y11*y20*y31+y10*y21*y31),w200-(y12* 

y20*y30+y10*y22*y30+y10*y20*y32),w210-(y11*y22*y30+y12*y21* 

y30+y12*y20*y31+y11*y20*y32+y10*y22*y31+y10*y21*y32),w111- 

(y11*y21*y31),w220-(y12*y22*y30+y12*y20*y32+y10*y22*y32),w211 

-(y12*y21*y31+y11*y22*y31+y11*y21*y32),w221-(y12*y22*y31+y12* 

y21*y32+y11*y22*y32),w222-(y12*y22*y32)]: 

N2:=NormalForm2(N1,B,T); 

Code Magma  

1. 

//s,a0,a1 and their derivatives 

Q:=RationalField(); 

p<w000,w100,w200,w110,w210,w111,w220,w211,w221,w222,a00, 

a10,a01,a02,a03,a04,a05,a06,s0,s1,s2,s3,s4,s5,s6,s7,s8, 

s9,c0,c1>:=PolynomialRing(Q,30,"elim",10); 

N2:=[w000, w100, w200+2*w110,6*w111+3*w210+3*a00*w000+ 

a10*w100, ...]; 

//N2 is the result of le resultat NormalForm2 procedure realized by Maple 

id:=ideal<p|s0-N2[1],s1-N2[2],s2-N2[3],s3-N2[4],s4-N2[5],s5- 

N2[6],s6-N2[7],s7-N2[8],s8-N2[9],s9-N2[10],c0-w111,c1-w110>; 

GR:=GroebnerBasis(id); 

2 . 

//eliminate c0 

p1<c0,c1,a00,a10,a01,a02,a03,a04,a05,a06,s0,s1,s2,s3, 

s4,s5,s6,s7,s8,s9>:=PolynomialRing(Q,20,"elim",1); 

sd:=[la suite des 6 derniers elements de la base de 

Groebner GR]; 

id:=ideal<p1|sd>; 
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Gr:=GroebnerBasis(id); 
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