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Abstract

In this article we will consider third order homogeneous differential equations: L(y)=y"+ay'+ay (&, a k) whose
Galois group S(L)is imprimitive. This case is characterised by the fact that the third symmetric power equation
L®3(y)=0has an exponential solution whose square is rational (Singer & Ulmer 1993). If L(y)=0 has a Liouvillian
solution Z whose logarithmic derivative u =z'/z is algebraic over a differential field (k,’),we will give an algorithm to
find the relation between @,, &, the semi-invariant S =Y ¥ ;which is unique up to multiplication by a constant, the
coefficients C,, C, of the minimal polynomial P (U )of U and their derivatives. The aim of this work is to diminutize
the number of constants C, stated in the algorithm of Singer & Ulmer (Singer & Ulmer 1993 Algorithm p. 31) whose
determination is not easy to do, and we will achieve this by using Groebner Basis.
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1. Introduction

This section is a recall of some definitions in Differential Galois theory that we will depend on in our study. In the
second section we will give an algorithm to find the relation between &, &, the semi-invariant S =Y Y Y ;which is
unique up to multiplication by a constant, the coefficients C,, C,of the minimal polynomial P (U)of U and their
derivatives. The aim of this work is to diminutize the number of constants C stated in the algorithm of Singer &
Ulmer (Singer & Ulmer 1993 Algorithm p. 31) whose determination is not easy to do, and we will achieve this by using
Groebner Basis, and in the third section we will expose the codes Maple and Magma we have used for more knowledge
about Invariant Theory refer to (Benson 1993, Cox 1992, Sturmfels 1993)

Differential Galois theory

Definition 1. (Singer & Ulmer 1998 p.3) A differential field (k ,’) is a field K together with a derivation” in K . The
set of all constants ¢ ={ack, a'=0} is a subfield of(k ,’) .

Definition 2. (Singer & Ulmer 1998 Defination1.1.) A differential field extension (K, A) of (k, 3) is a Liouvillian
extension if there is a tower of fields :

k=K,cK,c:--cK,, =K

Where K, isasimple field extension g, () of K., such that one of the following holds:
> isalgebraic over g,

> 5(n)=f, kK, (extension by an integral 7, :jfi )s

> &(nm)/m =T, K, (extension by the exponential of an integral _el™).

A function contained in a Liouvillian extension of | is called a Liouvillian function over | .

Definition 3. (Fakler 1997 p. 29) Let (k.')be a differential field of characteristicO and C is its field of constants
algebraically closed. Consider the following ordinary homogeneous linear differential equation:

Ly)=y"+a_y"+ - +ay'+ay =0 (a k) (1)

over (k,') with a system {y.....y,}of fundamental solutions. By extending the derivation’ to a system of
fundamental solutions and by adjunction of these solutions and their derivatives to (k.') in a way the field of constants
does not change, one getsK =k (y,...., ¥,), the so-called Picard-Vessiot extension (PVE) of L(y)=0. With these
assumptions, the PVE of L (y)=0always exists and is unique up to differential isomorphism. This extension plays the
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same role for a differential equation as a splitting field for a polynomial equation.

Definition 4. (Fakler 1997 p. 29) The set of all automorphisms of K , which fix(k,) elementwise and commute with
the derivation in K is a group, it is the differential Galois group S(K /k)=6&(L) of L(y)=0.

Let L(y)=y™+a,y"Y+ - +ay'+ay =0 (a ek)be an n—th order linear diferential equation with Galois
group S(L)eGL(n,C). To abasis {y; - v,}of the solution space of L (y )=0we associate the evaluation morphism:
CD:[Y

oo Yn}—>K

Yi =Y,
The value of a semi-invariant of S(L)eGL (n,C)is its image in K under the above evaluation morphism.
The morphism @ has the following properties:
a.  Orestricts to a bijection between linear forms and solutions of L (y ) =0

b. Semi-invariants of finite order N are sent to the n —th roots of elements of k . In Particular invariants are fixed
under the action of &(L )and are sent to elements of k .

Definition 5. (Singer & Ulmer 1997 Definition 1) LetL (y)=0be a homogeneous linear diferential equation of order N
and Iet{yl, yn}be a fundamental system of solutions. The differential equation L®™ (y)=0 whose solution space,
denoteds,, is spanned by monomials of degree M in Y4: -+ ¥, is called them —th symmetric power of L(y)=0.

An algorithm to construct L®™ (y)=0is given in (Singer 1980).The value of a semi-invariant of degree M and order
jisan J —th root of a solution of L™ (y)=0 (Singer & Ulmer 1993 Lemma 1.6.).

Definition 6. (Singer & Ulmer 1997 p.2) LetL(y)=y™ +a,,y"?+ - +ay'+ay =0 (a ek) be a linear differential
equation of order N overk . A solution of (1)in k is a rational solution, a solution in an algebraic extension of k
is an algebraic solution, , a solution whose logarithmic derivative is in k is an exponential solution, , a solution
belonging to a field obtained from k by successive adjunction of exponentials, integrals and algebraic functions is a
Liouvillian solution.

Definition 7. ( Ulmer 1994. P.3) LetG =GL (V) be a linear group acting irreducibly on the vector space V of dimension
N over C.Then G is said to be imprimitive if there exist subspaces {/;. - V4}withd >1such that V =V, ®--® V,
and, for eacho €G , the mapping V; »o(Vi) is a permutation of the setA={y. . vy} The set A is called a system of
imprimitivity of G . If all the subspaces V; are of one dimension, then G is called monomial. An irreducible group
G <GL (v )which is not imprimitive is called primitive.

for more knowledge about Differential Galois theory refer to Magid 1994, Kolchin 1948.
2. Algorithm to Diminutize the Number of Constants C,, Stated in the Algorithm of Singer & Ulmer 1993

In this section we will consider linear ordinary differential equations of third order the form:
Ly (Y)=y"+ay'+ay (a, & k) without losing the Liouvillian character of the solutions (Kolchin 1948, p.184,
OKKO 2018 Remark. P. 51), whose Galois group &(L )is imprimitive. This case is characterised by the fact that the third
symmetric power L®3(y)=0 has an exponential solution whose square is rational or equivalently it has a
semi-invariant of degree 3 and of order <2 exists (cf. Singer & Ulmer 1993 Theorem 4.6). If L(y)=0 has a
Liouvillian solution Z whose logarithmic derivative u =z '/z is algebraic over a differential field (k ,’) , we will
give an algorithm to find the coefficients of the minimal polynomial P (U )of U intermsof &,, &, the semi-invariant
S =YY ¥ ;which is unique up to multiplication by a constant, and their derivatives by using Groebner Basis. Befor this we
will introduce a lemma (Ulmer 2003, Lemma 3.1). ) and recall it.

Let Ry =k [Zl,o ,,,,, Zm,n,l] be the polynomial ring in nm variables. We will take the same notations of Felix Ulmer in

(i1)z(i2) ,”Z(im) <R

(Ulmer 2003) : Wi1~~~' denotes for the monic polynomial corresponding to J; ZowZ ol L ofm €Rn

v Im
for integers N =i, >i,>--->i_>0.Let S=2,Z,--Z, R, and S’,...,5" the first ] derivatives of

s, then S , its derivatives and the Nf(mm—lj polynomials , . (cR ) are related by a matrix
L on-1 bt
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A e(k,(j+1)xN) :

S WO,. 0

S! Wl.O‘ 0

L |FA .
S(j) anl,..,‘n—l

The theorem 3 and its proof in (Singer & Ulmer 1997. ) show that if g €K is an exponential solution of L™ (y)=0and
g=¥, , (S), for meNand 4, ..., Zmare M solutions ,different from zero, of the equation Lg (y)=0.

Then for all polynomial P(U)eK[U]:

m

P (U ):(ﬁzi jU m _(zl'zz,,,zm +'“+2122"'Z|'T|)U m—1+m+(_1)m HZ;
i=1

i=l

:lel, i (\No, ...,o)U " _‘"le, . (Wl,o, ...,o)U m—1+‘_'+(_1)m ‘le, . (\Nll)

the polynomial :

PU)
QU)=—y
( ) Hi:lzi
is in the ring K[U]. And in this case all roots U; of Q(U) give Liouvillian solutions ef“i of
L(y)=y"+ay"+ay +a,y (a, &, a, €k )(cf. Remark. OKKO 2018).

Lemma 3.1. (Ulmer F. 2003, Lemma 3:1). For a third order linear differential equation L (y ) =y"+ay’'+a,y over

k the order of L©3(y) =0is 7, 9 or 10. The order of L©3(y) =0is 7 if and only if 2a,=a;. In this case

L(y) = L®*(y ) where L(y)=y”+%y :

Proof: Let @, be the & —morphism obtained by restriction of the evaluation morphism @ to the vector space of
homogeneous forms of degreem of C ‘:Ylszng} (Singer & Ulmer 1993 Lemma 3.5). Because ®,is a bijection,
(Lemma 3.5 (4) in Singer & Ulmer 1993) implies that the kernel of @, is at most of dimension 1, i.e.L**(y)=0 is of
order at least 5. If @, is a bijection, then (Lemma 3.5 (4) in Singer & Ulmer 1993) implies that L®*(y)=0 is of order 9
or 10. Suppose now that the kernel of @,is of dimension 1 and generated byFZGCﬁl, Yo Y3] Note that F, must be
irreducible since otherwise @, is not a bijection. The homogeneous polynomials of degree 3 divisible by F,
correspond to the C —Span of Y;F,, Y,F,and Y3F; are in the kernel of @, showing L®*(y)=0 isof order <7.If
L®3(y)=0 is of order<6, it must exist a polynomial F,eC [Yl, Yo Yg}in the kernel of @®,which is not a multiple of
F,. If F,or F;is of degree zero in Y5, then we get a non constant homogeneous polynomial F €C {YI,YZ} whose
evaluation via @ is zero. Since Fis homogeneous and C is algebraically closed, F factors as a product of linear
forms [I.(«Y.-AY.). The evaluation via @ gives a linear relation between the basis elements Y,,¥,and thus a
contradiction. Denote Fz,aeC{Yl,Y z}the resultant of F, and F, with respect to Y 3.Since F,and F, are relatively
prime and are both of degree >1in Y3, we get that F..<C [Yl, Yz}is homogeneous of degree >1. Arguing as above
with F, we get a contradiction. Thus L®3(y)=0 isoforder 7 in this case. This proves the first assertion.We want to
characterise the fact That L©3(y):0 is of order 7 or equivalently thatL®?(y)=0is of order 5. This has been
done(Singer 1985) Lemma 3.4, but we will give a proof using the introduced formalism. According to section 2.1 we
have that L®2(y)=0 is of order <5 if and only if the matrix A5 is not invertible (i.e.if and only if
(2,2,25). ...,(zlzzza)sare linearly dependent). Performing a fraction free Gaussian elimination on the matrix (A,) we
get:
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1 00 -2a -2a 2aa,-2a) |
010 -a -5a-a -Ta+a -af
002 0 —8a,  —10a/-10a,
000 6 0 ~30a,
000 O 36 0
000 O 0  108(a -2a,)

Therefore L®3(y)=0 isof order 7 if and only if & =2a, A direct computation shows that in this caseL (y )=L®(y).

Now we will give an algorithm to find the coefficient of P (U )in terms of @,, &, the semi-invariant S =YY Y ;and
their derivatives :

The Algorithm:

> Write S and its derivatives in terms of the polynomials W ; , , the coefficients &;, @, and their derivatives
(see section 3., NormalForm1 and NormalForm2 procedures).

> Calculate Groebner Basis GR of the ideal | =<S W 001 +ees sO—..., Co—Wyy,, C —W1,1'0>

- R = k<\NO,O,O’ Wl,O,O’ WZ,O,O’ Vvl,l,O' W2,1,O’ Wl,l,l’ WZ,Z,O’ W2,1,1’ W2,2,1’ W2,2,2’ a0,0
9
80:81s++ 8ogr g S, S, S, S, ¢y, )
such that the order on the ring R is the elimination order on the first 10 variables, so we can find relations between
S, a,, 8, their derivatives and the coefficients C, =2,2,Z,+2,2,2,+2,Z,Z3,

Co=-21z32} of P(U)in the ring k[S, s’ S"..., 8] (see section 3. , S, @&,d, and their derivatives
procedure). After calculating Groebner Basis GR we find that its latest six elements have only the variables
S, 8,, @, , their derivatives and the coefficients C,, C;.

» Eliminate one more time the coefficient C,considred as a variable in the ringk [co, C,, &, &,8, al’aé
a, s,s,s",..., S‘g)] by calculating Groebner Basis Gr of the ideal id =(GRy, ..., GR,)

(see section 3, eliminate C,). So we obtain a relation between the variables S,S’,..., S9.a, a, ..., a”,

a,a,, ...,a” and C,.

»  We determin the value of C, with Maple. We substitute this value in the element of Groebner Basis

Gr which contains S,a, a,, their derivatives and the coefficients C,, C; in order to express C,in terms of

S, &, a,and their derivatives. In reality, the element Gr we speak about is Gr,, whatever the order of the symmetric
equation L®3(y)=0is 7, 9 or 10.

7 ., 2 43 1 o 1 o, s
Gr, :coelgal—gcoelg2 +§coagafJ +Ea§alS +Zaoafa05 —5a§afa08 +§afa08

6)

i

1 ., 63 . 1, 23 ., 11 ,,. 13 17
_Zaoa'is * g G0 + 7 CiB% ~ 1 A S +%aoaos _analao"s ~a0
;2,8 '—g—zaiaézs +%aoa1a88 ’—18—101a§S”+%a0a1a58 '+%a§a§”’
—aas " aals ¢ - Soaal+ oaar+ S aal’s —-aal’s
+%a{,a(’,’8 ’—%afags "y —%aoafs “_ %clagag

—%aoaé“)s '+gaga3's "—%aoags ”+%a§"28 "

25 7 7 7
— S d'S"— W 249 " Jl
36‘5108(0 24“’ 40é 54° #
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7 1 1
_Taas®_ L g 1 g
7250 Tigg® T

Examples.
> L®3 (y ) =0 isoforder 7.

Examplel. Take the equation :

ddy +32x2 —27x +27dy  64x°—81x* +135x —54

dx®  36x?(x —-1)° dx - 72x3(x 1)’
whose symmetric power L®3(y)=0is of order 7. The Q- vector space of Liouvillian solutions of L93(y)=0 is

generated by only one solutions = x *-2x *+x 2. By using our algorithm, we obtain the coefficients of the minimal
polynomial P (U ):

L(y)=

c,=s =x*-2x*+x?

c,=s' =4x°%—6x7+2x

¢, = 25313961574400x * —122936959713280x *° + 369414924755712x °
—759762796466484x ® +1160223530219379x ' —1352965374477072x °
+1190804183867628x ° —779912777349666x * + 353889936963693x °

—95718851436546x > +11393791055748x —%(2101057945& *

—79774543872x ® + 234889910208x ' —435358558917x ° +634598874729x °
—673422918633x * +534201757263x * — 298530368262x * +96095161620x
-12699314136)

C, = 40936268627968x > —221509596151808x ' + 669402865431552x *°
—1391212752866640x ° +2084599015102737x ® — 2335386769620696x ’
+1894909901929902x ® —1033536296671596x °+272124855869121x *
+84555330577452x * —101906800574184x > +33293137560192x

—Wx (x -1)(64x° -81x *+135x —54) (328290304 ¢

—830984832x ° +1925952309x * —2335090518x * +2196559377x *
—1191608820x +235172484)

> L (y)=0 is of order 9.
Example2. Take the equation:

d3
dx

8x -3 d? . 3264x > —2452x +729dy
X (x —1) dx 2 108x 2 (x _1)2 dx

L) =+

_ 71280 * ~80410x * + 47466x —10935
1458x* (x 1)’

(example 4.5 in Ulmer 2003.) that can be transferred to the equation:

Lo (¥) _d’y  96x°-76x +81dy 2592x°—3068x ° +5400x —2187

SEYT T d® 108k % (x —1)° dx 2916x ° (x ~1)°
by using procedure transfereL with Maple program (Okko 2018). The equation Ls (y) is irreducible, its differential
Galois group is Gy, and its third symmetric power L®°(y)=0 is of order9. The value of the semi-invariant is

s =4(x 71)5\/73 whose square is rational and it generates the vector space of Liouvillian solutins of L®3(y)=0. By
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using our algorithm we obtain the coefficients of the minimal polynomial P (U):

;=S =4/(x —1)5\/x_3

c2=s'=g\/x_3\/(x 1)’ +g\/x_\/(x —1y°

C, = 4—:]3'2(27680816981606400x 12 _146369305291456512x ' + 460721269652889600x *°

-1009013808719533056x ° +1645470628884383488x ° — 2078192403916191552x ’
+2032861092998975552x °© —1522715003967278160x ° +839232768599394624x *
—-307532640935458044x * + 62289431318500884x * — 4200887273556699x

—~231958332276525) //x \/x —1(5743767158784x ° — 20393922244608x °

+ 60302794885632x ' —109841060253248x ° +161225407720576X °

-171833666743152x * +138087079432992x ° — 79030988627868x * + 25962912325800X — 3471675001929)

Co= @(120862286310644121& 2 ~5620819173370232832x ' +15699354875538112512x *°

—30138292242681495552x ° + 41327897457410536960x & — 42973740430560205568x *
+32763357563840003520x © —18873014663604337920x °+8966085528248791344x *
—3863141918254277136x *+1563648342203575476x > —500362208768814480x

+79072079758122051) / \/X_3 b —1(5743767158784X ¥ —20393922244608x ®

+60302794885632x * —109841060253248x ©
+161225407720576x ° —171833666743152x * +138087079432992x * — 79030988627868x >

+25962912325800x —3471675001929)

> L®3 (y ) —0 isoforder 1p.
Example3. Let’s take the equation (example 4.9 in Ulmer 2003):

3

d%  7x -3 d?y 2(138x*-115x +7) gy
L(y):dx_3+ =

X (x —1)dx_2+ 27x?(x -1)"  dx

10(162x > —28x —7)
T v
729x 2 (x -1)
It becomes as follow after using the transformation transfereL with Maple program (see transfereL. Okko 2018):

d? 2 12x2-7x +7d 324x ® —301x 2 + 525x — 224
Lo (V)= 3;+_ > 2 Y 2| 3 )
dx 27 x (X —]_) dx 729 x3(x —1)

whose third symmetric power L®3(y)=0is of order 10, and its differential Galois group &(L)=Gg, (example

4.5 in Ulmer 2003 ). If {Y,.Y,.Y,}is a basis of the solution space of L(y)=0 , then the invariants subspace of degree 3
of Gy, is generated by the polynomial 1,=YY ¥ ;and the 3semi-invariants spaces are generated by the polynomials
S, =Y Y 74 S, =Y Jew Y P (w1 Foand Sy =Y +(-w -1 +w ¥, (cf. Ulmer 2003 section 4.3), W is the
Wronskian. s =x*—2x3+x 2is an unique solution whose square is rational. By using our algorithm, we obtain the
coefficients of the minimal polynomial P(U):
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C,=s =X *-2x *+x 2
C,=s’'=4x°—6x2+2x
¢, = 25313961574400x ** — 26409495661920x  +369414924755712x °
—124939714582914x ® +172153006123784x ’ —187209130557757x ® +156749233965863x °
~100541914181821x * +47033417633853x * —13872317475296x * +1989962456888x
—~63264083456 ) /54(11218295232x ° — 31314188304 ° +84221681796x " —135184221739x °
+181586038333x ° —181243862121x * +137006478371x * —78056142304x 2 + 26777872800
~3793656832)
C, = (73768485297024x 12 _333419069906784x ' +855218148700536x *° —369414924755712x °

+2139932814242671x ° — 2227665744927448x ' +1741090046828426x ° —963045565711138x °

+324050153614243x * —1905494677324x * —56321850003132x * + 22301556579456x
—2762481114400)/729 x (34624368x ® —64482264x ° —143934343x * —155095486X

+138557839x 2 — 79850400x +16935968) (324x 3_301x % +525x — 224)

3. In this section we find the procedures which we have spoken about in the Algorithm (in section 2.) proposed in
this paper.

Code Maple

1.

#NormalForm1

with(diffalg):

with(Groebner):

with(Polynomialldeals):
NormalForm1:=proc(y1l,y2,y3,a0,al)

local x,i,s,R,R1,b0,b1;

global y10,y20,y30,y11,y21,y31,y12,y22,y32,a00,a10,a01,
a02,a03,a04,a05,a06;

s:=y1(X)*y2(x)*y3(x);

R[0]:=s;
R1[0]:=subs([y1(x)=y10,y2(x)=y20,y3(x)=y30],R[0]);
b0:=a0(x);b1:=al(x);

for i from 1 to 9 do

if i>=3 then R[i]:=diff(R[i-1],x);
R[i]:=subs(diff(y1(x),x$3)=b1*diff(y1(x),x)+
b0*y1(x),diff(y2(x),x$3)=b1*diff(y2(x),x)+b0*
y2(x),diff(y3(x),x$3)=b1*diff(y3(x),x)+b0*y3(x),

R[D);

else

R[i]:=diff(R[i-1],x);R[i]:=subs(diff(b1,x)=2*b0,R[i]);

fi;
R1[i]:=subs([y1(x)=y10,y2(x)=y20,y3(x)=y30,diff(y1(x),x)=y11,
diff(y2(x),x)=y21,diff(y3(x),x)=y31,diff(y1(x),x$2)=y12,diff (y2(x),x$2)=y22,diff(y3(x),x$2)=y32,00=a00,b1=a10,diff
(b0,x)=a01,diff(b0,x$2)=a02,diff(b0,x$3)=a03,diff(b0,x$
4)=a04,diff(b0,x$5)=a05,diff(b0,x$6)=a06],R[i]);

od;
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return([seq(R1[i], i= 0..9)]);

end:

2.

#NormalForm2

NormalForm2:=proc(11,12,order)

local j,NF ;global x1,x2,x3,x4,x5,x6,X7,x8,x9,x10,x11,x12,x13,
x14,x15,x16,x17,x18,x19;

for j from 1 to nops(11) do

NF[j-1]:=NormalForm(I1[j],12,T);

od;

return([seq([j-1,NF[j-1]1, j=1..10)]);

end:

T:=lexdeg([y10,y20,y30,y11,y21,y31,y12,y22,y32],[w000,
w100,w200,w110,w111,w222,w210,w220,w211,w221]):
B:=[w000-y10*y20*y30,w100-(y11*y20*y30+y10*y21*y30+y10*y20*
y31),w110-(y11*y21*y30+y11*y20*y31+y10*y21*y31),w200-(y12*
y20*y30+y10*y22*y30+y10*y20*y32),w210-(y11*y22*y30+y12*y21*
y30+y12*y20*y31+y11*y20*y32+y10*y22*y31+y10*y21*y32),wlll-
(y11*y21*y31),w220-(y12*y22*y30+y12*y20*y32+y10*y22*y32),w211
-(y12*y21*y31+y11*y22*y31+y11*y21*y32),w221-(y12*y22*y31+y12*
y21*y32+y11*y22*y32),w222-(y12*y22*y32)]:
N2:=NormalForm2(N1,B,T);

Code Magma

1.

//s,a0,al and their derivatives

Q:=RationalField();
p<w000,w100,w200,w110,w210,w111,w220,w211,w221,w222,a00,
a10,a01,a02,a03,a04,a05,a06,s0,s1,s2,53,54,55,56,57,58,
s9,c0,c1>:=PolynomialRing(Q,30,"elim",10);

N2:=[w000, w100, w200+2*w110,6*w111+3*w210+3*a00*w000+
al0*w100, ...];

/IN2 is the result of le resultat NormalForm2 procedure realized by Maple
id:=ideal<p|s0-N2[1],s1-N2[2],52-N2[3],s3-N2[4],54-N2[5],s5-
N2[6],s6-N2[7],57-N2[8],58-N2[9],59-N2[10],c0-w11l,c1-w110>;
GR:=GroebnerBasis(id);

2.

/leliminate c0

pl<c0,c1,a00,a10,a01,a02,a03,a04,a05,a06,s0,s1,52,s3,
s4,55,56,57,58,59>:=PolynomialRing(Q,20,"elim",1);

sd:=[la suite des 6 derniers elements de la base de

Groebner GR];

id:=ideal<pl|sd>;
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Gr:=GroebnerBasis(id);
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