A New Eighth Order Runge-Kutta Family Method
- Séka Hippolyte
- Assui Kouassi Richard
Abstract
In this article, a new family of Runge-Kutta methods of 8^th order for solving ordinary differential equations is discovered and depends on the parameters b_8 and a_10;5. For b8 = 49/180 and a10;5 = 1/9, we find the Cooper-Verner method [1]. We show that the stability region depends only on coefficient a_10;5. We compare the stability regions according to the values of a_10;5 with respect to the stability region of Cooper-Verner.
- Full Text: PDF
- DOI:10.5539/jmr.v11n2p190
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org