Zero Product of Three Two Level Toeplitz Operators
- Matthew Kim
- Brian Shon
- Albert Cho
- Eric Cho
- Tedd Jung
- Omer Mujawar
Abstract
In this paper we investigate conditions for T_f1 T_f2 T_f3 - T_f1f2f3 = 0 where T_f1 , T_f2 , and T_f3 are bi-level Toeplitz operators on the Hardy space of bidisk and f_1; f_2; f_3 are bounded and measurable complex valued functions on bidisk. We also provide that T_f1 T_f2 T_f3 identical to zero matrix if and only if at least one of f_i is identically zero for 1 ≤i ≤3.- Full Text: PDF
- DOI:10.5539/jmr.v11n2p39
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org