The Quadratic Diophantine Equations x^2− P(t)y^2− 2P′(t)x + 4P(t)y + (P′(t))^2− 4P(t) − 1 = 0
- Amara Chandoul
- Diego Marques
- Samira Shaban Albrbar
Abstract
Let P := P(t) be a non square polynomial. In this paper, we consider the number of integer solutions of Diophantine equation
E : x2− P(t)y2− 2P′(t)x + 4P(t)y + (P′(t))2− 4P(t) − 1 = 0.
We derive some recurrence relations on the integer solutions (xn,yn) of E. In the last section, we consider the same problem over finite fields Fpfor primes p ≥ 5. Our main results are generaliations of previous results given by Ozcok and Tekcan (Ozkoc and Tekcan, 2010).
- Full Text: PDF
- DOI:10.5539/jmr.v11n2p30
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org