
http://jmr.ccsenet.org Journal of Mathematics Research Vol. 11, No. 2; 2019

The Quadratic Diophantine Equations
x2 − P(t)y2 − 2P′(t)x + 4P(t)y + (P′(t))2 − 4P(t) − 1 = 0

Amara Chandoul1,2, Diego Marques1, Samira Shaban Albrbar3
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Abstract

Let P := P(t) be a non square polynomial. In this paper, we consider the number of integer solutions of Diophantine
equation

E : x2 − P(t)y2 − 2P′(t)x + 4P(t)y + (P′(t))2 − 4P(t) − 1 = 0.

We derive some recurrence relations on the integer solutions (xn, yn) of E. In the last section, we consider the same
problem over finite fields Fp for primes p ≥ 5. Our main results are generaliations of previous results given by Ozcok and
Tekcan (Ozkoc and Tekcan, 2010).
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1. Introduction

Let f (x1, x2, . . . , xn) be a polynomial with integer coefficients in one or more variables. A Diophantine equation is an
algebraic equation

f (x1, x2, . . . , xn) = 0

for which integer solutions are sought.

The problem to be solved is to determine whether or not a given Diophantine equation has solutions in the domain of
integer numbers.

In the case where the Diophantine equation is solvable, there are some natural questions:

∗ ) Is the number of solutions finite or infinite ?

∗∗) Is it possible to determine all solutions ?

In 1900, (Hilbert, 1900), asked for general algorithm to determine, in a finite number of steps, the solvability of any given
Diophantine equation. In other words, he asked if there are any universal method of solving all Diophantine equations.

Unfortunately, it was proven by Matyasevich, in 1970, that this problem is unsolvable (Matyasevich, 1970).

The absence of a general algorithm was not by itself obstacle to involve more than technique in solving Diophantine
equations. In fact, Diophantine equations can be very creative and mathematiciens usually have to exhibit creativity to
solve these questions.

One of the best-known techniques is that one based on reduction of the Diophantine equation of arbitrary size with many
arbitrary unknowns to another equation having a fixed degree and fixed number of unknowns.

Another one of the most common techniques used to examine Diophantine equations problem is that based on considering
residues by checking certain common modulos on each term of the equation, one can either arrive at a contradiction to
prove that there’s no solution, or to find the unique solutions that satisfy the equation. This technique assumes basic
knowledge of modular arithmetic as well as important notions and theorem like the quadratic residues modulo a prime
number p and Euler theorem.
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Recently, there are a number of paper have been written and published by Tekcan and Chandoul, using the techniques
mentioned above, see (Tekcan, 2004, 2006, 2007, 2010, 2011 and Chandoul, 2011).

This paper offers an extension of one of the results given by Ozkoc and Tekcan, that is given in (Ozkoc and Tekcan,
2010). In (Ozkoc and Tekcan, 2010), Tekcan consider the number of integer solutions of Diophantine equation E :
x2 − (t2 − t)y2 − (4t − 2)x + (4t2 − 4t)y = 0 over Z, where t ≥ 2. Then, we assume that the Diophantine equation E can be
extended to the form

E : x2 − P(t)y2 − 2P′(t)x + 4P(t)y + (P′(t))2 − 4P(t) − 1 = 0

where P(t) be a non-square polynomial.

These extensions allows us to solve many types of such equations. We also derive some recurrence relations on the integer
solutions of a Pell equation.

Another advantage of our results is that the procedure can be implemented by computer, which allows us to obtain all the
solutions after the insertion of the coefficients and the verification of the conditions of the method.

2. Main Results

We consider the equation

E : x2 − P(t)y2 − 2P′(t)x + 4P(t)y + (P′(t))2 − 4P(t) − 1 = 0 (2.1)

with P := P(t) ∈ Z[t]\{0, 1} a non square polynomial. It is a generalization of the quadratic Diophantine equation given
by Ozkoc and Tekcan, (Ozkoc and Tekcan, 2010). Here, we show that: if P is a non perfect square polynomial, then (2.1)
has an infinitude of integer solutions. In this case we find a closed expression (xn, yn), the general positive integer solution,
by an original method.

Note that the resolution of E in its present form is difficult, that is, we can not determine how many solutions E has and
what they are. So, we have to transform E into a Pell equation which can be easily solved. To get this let

T :
{

x = u + P′(t)
y = v + 2 (2.2)

we get,
T (E) := Ẽ : (u + P′(t))2 − P(t)(v + 2)2 − 2P′(t)(u + P′(t)) + 4P(t)(v + 2)

+(P′(t))2 − 4P(t) − 1 = 0

Then, the equation (2.1) becomes
Ẽ : u2 − P(t)v2 = 1 (2.3)

which is a Pell equation.

It is known that the above Pell equation is always solvable. Its solutions are related to the continued fraction expansion of√
P(t).

We will be concerned with the continued fraction expansions of
√

P(t), where P(t) is a non-square. In fact, this continued
fractions have a very interesting form, which is summarized in the next theorem.

Theorem 2.1 Let P(t) be a prime. Then
√

P(t) = [a0; a1, a2, · · · , al, 2a0], where the repeating portion, excluding the last
term, is symmetric upon reversal, and the central term may appear either once or twice.

Theorem 2.2 Let
√

P(t) =
[
a0; a1, a2, · · · , al, 2a0

]
denote the continued fraction expansion of period lenght l, where P(t)

be a non-square polynomial.

Let
pn

qn
be the nth convergent of

√
P(t). Then

(1) The fundamental solution of the Pell equation Ẽ in (2.3) is (u1, v1), such that


u1 = pl−1

, if l is even,
v1 = ql−1

and


u1 = p2l−1

, if l is even
v1 = q2l−1

Set {(uk, vk)} = {(pkl−1, qkl−1)} where
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pkl−1

qkl−1
=

a0; a1, a2, · · · , al,︸           ︷︷           ︸
l−1

2a0, a1, a2, · · · , al, 2a0, a1, a2, · · · , al︸                                   ︷︷                                   ︸
(k−1)l−1

, if l is even.

And
p2kl−1

q2kl−1
=

a0; a1, · · · , al, 2a0, a1, · · · , al︸                          ︷︷                          ︸
2l−1

, 2a0, a1, · · · , al, 2a0, · · · , a1, · · · , al,︸                                  ︷︷                                  ︸
(2k−2)l−1

 , if l is odd.

Then (uk, vk) is a solution of Ẽ.

(2) The consecutive solutions (uk−1, vk−1) and (uk, vk) the Pell equation Ẽ in (2.3) satisfy


uk = u1uk−1 + (a0u1 + α)vk−1

, forall k ≥ 2, if l is even
vk = v1uk−1 + (a0v1 + β)vk−1

where α = xl−2 and β = xl−2.

and


uk = u1uk−1 + (a0u1 + η)vk−1

, forall k ≥ 2, if l is odd
vk = v1uk−1 + (a0v1 + δ)vk−1

where η = x2l−2 and δ = x2l−2.

To prove this theorem, we need the following Lemma

Lemma 2.3 Let
√

P(t) =
[
a0; a1, a2, · · · , al, 2a0

]
denote the continued fraction expansion of period lenght l. Then

{
a0xkl−1 + xkl−2 = P(t)ykl−1
a0ykl−1 + ykl−2 = xkl−1

for all k ≥ 2.

Proof. (Lemma 2.3)

We have
√

P(t) =
[
a0; a1, a2, · · · , a1, 2a0

]
. Thus, we may write

√
P(t) =

[
a0; a1, a2, · · · , akl−1, a0 +

√
P(t)

]
, then

√
P(t) =

(a0 +
√

P(t))xkl−1 + xkl−2

(a0 +
√

P(t))ykl−1 + ykl−2
, which gives rise to the equation

P(t)ykl−1 +
√

P(t)(a0ykl−1 + ykl−2) = (a0xkl−1 + xkl−2) +
√

P(t)xkl−1.

Which yields, a0xkl−1 + xkl−2 = P(t)ykl−1 and a0ykl−1 + ykl−2 = xkl−1.

�

Proof. (Theorem 2.2)

(1) We prove the theorem only for even number l. It is easily seen that x2
kl−1 − P(t)y2

kl−1 = xkl−1ykl−1 − ykl−1xkl−2, which
gives x2

kl−1 − P(t)y2
kl−1 = (−1)kl. Thus, if l is even x2

kl−1 − P(t)y2
kl−1 = 1 which yields (uk, vk) are solutions of Ẽ for all k ≥ 1

and (u1, v1) is the fundamental solution.

We can also prove it using the method of mathematical induction. In fact, if l is even, we have
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uk

vk
=

xkl−1

ykl−1
=

a0; a1, a2, · · · , a1,︸           ︷︷           ︸
l−1

2a0, a1, a2, · · · , a1, 2a0, · · · , a1, a2, · · · , a1︸                                           ︷︷                                           ︸
(k−1)l−1


=

a0; a1, a2, · · · , a1,︸           ︷︷           ︸
l−1

a0 + a0, a1, a2, · · · , a1, 2a0, · · · , a1, · · · , a1︸                                      ︷︷                                      ︸
(k−1)l−1


=

a0; a1, a2, · · · , a1,︸           ︷︷           ︸
l−1

a0 +
x(k−1)l−1

y(k−1)l−1



=

(
a0 +

x(k−1)l−1

y(k−1)l−1

)
xl−1 + xl−2(

a0 +
x(k−1)l−1

y(k−1)l−1

)
yl−1 + yl−2

=
a0y(k−1)l−1xl−1 + x(k−1)l−1xl−1 + y(k−1)l−1xl−2

a0y(k−1)l−1yl−1 + x(k−1)l−1yl−1 + y(k−1)l−1yl−2

.

Then
u2

k − P(t)v2
k = (a0y(k−1)l−1xl−1 + x(k−1)l−1xl−1 + y(k−1)l−1xl−2)2

−P(t)(a0y(k−1)l−1yl−1 + x(k−1)l−1yl−1 + y(k−1)l−1yl−2)2

= (u1uk−1 + (a0u1 + α)vk−1)2 − P(t)(v1uk−1 + (a0v1 + β)vk−1)2

= u2
1u2

k−1 + 2u1(a0u1 + α)uk−1vk−1 + (a0u1 + α)2v2
k−1

−P(t)v2
1u2

k−1 − 2P(t)(a0v1 + β)v1uk−1vk−1 − P(t)(a0v1 + β)2v2
k−1

= (u2
1 − P(t)v2

1)u2
k−1 −

[
(P(t)(a0v1 + β)2 − (a0u1 + α)2

]
v2

k−1
+2

[
u1(a0u1 + α) − P(t)v1(a0v1 + β)

]
uk−1vk−1

Using the above lemma (Lemma 2.3), we have

(P(t)(a0v1+β)2− (a0u1+α)2 = P(t)u2
1−P(t)2v2

1 = P(t)(u2
1−P(t)v2

1) = P(t) and u1(a0u1+α)−P(t)v1(a0v1+β) = 0. Hence,
we conclude that

u2
k − P(t)v2

k = u2
k−1 − P(t)v2

k−1 = 1

So (uk, vk) is also solution of Ẽ. Completing the proof.
(2) This assertion is clear by the above. �

As we reported above, the Diophantine equation E could be transformed into the Diophantine equation Ẽ via the trans-
formation T . Also, we showed that x = u + P′(t) and y = v + 2. So, we can retransfer all results from Ẽ to E by applying
the inverse of T . Thus, we can give the following main theorem

Theorem 2.4 Let D be the Diophantine equation in (2.1). Then

(1) The fundamental (minimal) solution of E is (x1, y1) = (u1 + P′(t), v1 + 2)

(2) Define the sequence {(xn, yn)}n≥1 = {(un + P′(t), vn + 2)}, where {(xn, yn)} defined in (??). Then (xn, yn) is a solution of
E. So it has infinitely many integer solutions (xn, yn) ∈ Z × Z.
(3) The solutions (xn, yn) satisfy the recurrence relations


xk = u1xk−1 + (a0u1 + α)yn−1 − u1(2a0 + P′(t)) − 2α + P′(t)

, if l is even
yk = v1xk−1 + (a0v1 + β)yn−1 − v1(2a0 + P′(t)) − 2β + 2

for k ≥ 2,and 
xk = u1xk−1 + (a0u1 + η)yn−1 − u1(2a0 + P′(t)) − 2η + P′(t)

, if l is odd
yk = v1xk−1 + (a0v1 + δ)yn−1 − v1(2a0 + P′(t)) − 2δ + 2

for k ≥ 2.
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Example 2.5 Let P(t) = t4 + 4t3 + 6t2 + 4t + 2, Then√
P(t) =

[
t2 + 2t + 1; 2t2 + 4t + 2

]
.

So, (u1, v1) = (2t4 + 8t3 + 4t2 + 3, 2t2 + 4t + 2) is the fundamental solution of

Ẽ1 : u2 − (t4 + 4t3 + 2t2 + 2)v2 = 1

and the other solutions are given by


uk = (2t4 + 8t3 + 4t2 + 3)uk−1 + (2t6 + 12t5 + 30t4 + 40t3 + 32t2 + 16t + 4)vk−1

vk = (2t2 + 4t + 2)uk−1 + (2t4 + 8t3 + 4t2 + 3)vk−1

For k ≥ 2.

Morover, let n = t2 + 2t + 1, then P(t) become D(n) = n2 + 1. Then√
D(n) =

[
n; 2n

]
.

So, (u1, v1) = (2n2 + 1, 2n) is the fundamental solution of

Ẽ1 : u2 − (n2 + 1)v2 = 1

and the other solutions are given by


uk = (2n2 + 1)uk−1 + (2n3 + 2n)vk−1

vk = 2nuk−1 + (2n2 + 1)vk−1

For k ≥ 2.

Then the fundamental solution of

E1 : x2 − (n2 + 1)y2 − 4nx + (4n2 + 4)y − 2 = 0

is (x1, y1) = (2n2 + 2n + 1, 2n + 2) and the other solutions are given, for k ≥ 2, by
xk = (2n2 + 1)xk−1 + (2n3 + 2n)yk−1 − 8n3 − 4n

yk = 2nxk−1 + (2n2 + 1)yk−1 − 8n2 + 2n − 2.

Further, for t = 1, P(t) = 17. Then √
P(t) =

[
4; 8

]
.

So, (u1, v1) = (33, 8) is the fundamental solution of

Ẽ1 : u2 − 17v2 = 1

and the other solutions are given by


uk = 33uk−1 + 136vk−1

vk = 8uk−1 + 33vk−1

For k ≥ 2.

Then the fundamental solution of
E1 : x2 − 17y2 − 64x + 68y + 955 = 0

is (x1, y1) = (65, 10) and the other solutions are given, for k ≥ 2, by
xk = 33xk−1 + 136yk−1 − 1296

yk = 8xk−1 + 33yk−1 − 320.
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Example 2.6 In this example, we consider the number of integer solutions of the Diophantine equation

E : x2 − (t2 + t)y2 − (4t + 2)x + (4t2 + 4t)y = 0

We have P(t) = t2 + t, thus P′(t) = 2t + 1 and the continued fraction expansion of
√

P(t) is

√
P(t) =

[
t; 2, 2t

]
which yields,

u1

v1
= [t; 2] =

2t + 1
2

. Then the fundamental solution of E is (x1, y1) = (2t + 1 + P′(t), 2 + 2) = (4t + 2, 4)

and the other solutions are given by


xk = (2t + 1)xk−1 + (2t2 + 2t)yk−1 − 8t2 − 6t

for, k ≥ 2
yk = 2xk−1 + (2t + 1)yk−1 − 8t − 2

3. The Diophantine Equation E Over Finite Fields Fp

We will first consider the notion of a square modulo an odd prime. Let p be an odd prime and a ∈ Z such that (a, p) = 1.
If x2 ≡ a ( mod p) admits a solution, then a is a quadratic residue modulo p. Otherwise, a is a quadratic non residue
modulo p.

In this section, we will consider the integer solutions of

E : x2 − P(t)y2 − 2P′(t)x + 4P(t)y + (P′(t))2 − 4P(t) − 1 = 0

over finite fields Fp for primes p. We set

E(Fp) =
{

(x, y) ∈ Fp × Fp : x2 − P(t)y2 − 2P′(t)x + 4P(t)y + (P′(t))2

−4P(t) − 1 ≡ 0 (mod p) } .
Then we can give the following theorem.

Theorem 3.1 Let E be the above Diophantine equation and t ∈ Fp, then

1) If P(t) ∈ Qp, we have
#E(Fp) = p − 1

(2) If P(t) < Qp, we have

#E(Fp) =


p − 1, i f p ≡ 1 (mod 4)

p + 1, i f p ≡ 3 (mod 4)

where Qp denote the set of quadratic residues.

To prove this theorem, we need the following Lemmas:

Lemma 3.2 In every complete system of ordinary residues modulo p, there are exactly
p − 2

2
quadratic residues.

Proof. It suffices to prove that in
[
1, p − 1

]
there are exactly

p − 2
2

quadratic residues. Note first that 12, 22, . . . , (
p − 2

2
)2

are all incongruent mod p (if 1 ≤ i, j <
p
2

and i2 ≡ j2 (mod p) then i ≡ j (mod p) hence i = j or i = − j, i.e., i + j ≡ 0. But
2 ≤ i + j <p, and so i + j ≡ 0 is impossible).

Let S denote the set of minimal non-negative ordinary residues mod p of 12, 22, . . . , (
p − 2

2
)2. The elements of S are

quadratic residues of p and |S | = p − 2
2

. Suppose that n ∈ [
1, p − 1

]
is a quadratic residue of p. Then there exists

m ∈ [
1, p − 1

]
such that m2 ≡ n. Then (p − m)2 ≡ m2 ≡ n and {m, p − m} ∩ [

1, p − 1
]
, ∅. Hence n ∈ S , whence S is the

set of quadratic residues of p inside
[
1, p − 1

]
. �

Lemma 3.3 Suppose p is an odd prime; and suppose a, b are coprime to p. Then

1) If both of a, b, or neither, are quadratic residues, then ab is a quadratic residue.

2) If one of a, b is a quadratic residue and the other is a quadratic non-residue then ab is a quadratic non-residue.
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Proof. Suppose a is a quadratic residue. As b runs over the non-zero residues mod p, so does ab. We know that ab is a
quadratic residue if b is a quadratic residue, and we know that just half the non-zero residues are quadratic residues. It
follows that ab must be a quadratic non-residue if b is a quadratic non-residue.

Now suppose a is a quadratic non-residue. We have just seen that if b is a quadratic residue then ab is a quadratic non-
residues. But we know that only half the residues are quadratic non-residues. It follows that ab must be a quadratic residue
in the remaining cases, when b is a quadratic non-residue.

�

Lemma 3.4 Let p be a prime number, then −1 is a quadratic residue modulo p, if and only if p = 2 or p ≡ 1 (mod 4).

Proof. Clearly −1 is a quadratic residue modulo 2. If p is odd, Apply Euler’s criterion, to write
(
−1
p

)
= (−1)(p−1)/2, and

notice that this is +1 when (p − 1)/2 is even and −1 when (p − 1)/2 is odd. �

Following the above lemmas, the multiplicative inverse of a residue is a residue, and the inverse of a nonresidue is a
nonresidue.

Proof. (of Theorem 3.1) Now, we consider the Diophantine equation

E : x2 − P(t)y2 − 2P′(t)x + 4P(t)y + (P′(t))2 − 4P(t) − 1 = 0,

over finite fields Fp.
To prove such theorem, we reduce problem of the Diophantine equation E to problem of the Pell equation Ẽ. In fact, it is
clear that E become

Ẽ : u2 − P(t)v2 = 1.

Now, let t ∈ F∗p and let d such that P(t) ≡ d (mod p), then Ẽ become

Ẽd,p : u2 − dv2 ≡ 1 (mod p)

We set
Ẽd,p(Fp) =

{
(u, v) ∈ Fp × Fp : u2 − dv2 ≡ 1 (mod p)

}
.

Then, it is desired to count #Ẽd,p(Fp). Let p ≥ 5, then we have two cases:

Case 1 : If d ∈ Qp ; Suppose that v = 0, then Ẽd,p become u2 ≡ 1 (mod p) and hence u = 1 or u = p − 1, thus (1, 0) and

(p − 1, 0) are two solutions of Ẽd,p.

Now, Suppose that u = 0, then Ẽd,p become −dv2 ≡ 1 (mod p) which yields dv2 ≡ −1 (mod p), thus v2 ≡ (−1)d−1 (mod p).
Here we have two prospects; either p ≡ 1 (mod 4) or p ≡ 3 (mod 4).

∗) If p ≡ 1 (mod 4). Using the above lemmas, then Ẽd,p has two solutions (0, v1) and (0, v2). And then, we consider the set

S p = Fp \ {0, 1, p − 1}. Thus, there are
p − 5

2
points u in S p such that

u2 − 1
d

is a square. Set c , 0 such that
u2 − 1

d
= c2,

then dv2 ≡ c2 (mod p), which gives that Ẽd,p has two solutions (0, c) and (0,−c) for each u ∈ S p. So, it has p− 5 solutions
over S p × S p. Therefore, Ẽd,p has p − 5 + 4 = p − 1 solutions over Fp.

∗∗) Suppose now that, p ≡ 3 (mod 4). Using the above lemmas, then Ẽd,p has no solution. And then, we consider the set

S p = Fp \ {0, 1, p − 1}. Thus, there are
p − 3

2
points u in S p such that

u2 − 1
d

is a square. Set c , 0 such that
u2 − 1

d
= c2,

then dv2 ≡ c2 (mod p), which gives that Ẽd,p has two solutions (0, c) and (0,−c) for each u ∈ S p. So, it has p− 3 solutions
over S p × S p. Therefore, Ẽd,p has p − 3 + 2 = p − 1 solutions over Fp.

Case 2 : If d < Qp ; Suppose that v = 0, then Ẽd,p become u2 ≡ 1 (mod p) and hence u = 1 or u = p − 1, thus (1, 0) and

(p − 1, 0) are two solutions of Ẽd,p.

Now, Suppose that u = 0, then Ẽd,p become −dv2 ≡ 1 (mod p) which yields dv2 ≡ −1 (mod p), thus v2 ≡ (−1)d−1 (mod p).
Here we have two prospects; either p ≡ 1 (mod 4) or p ≡ 3 (mod 4).
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∗) If p ≡ 1 (mod 4). Using the above lemmas, then Ẽd,p has no solution. And then, we consider the set S p = Fp \

{0, 1, p − 1}. Thus, there are
p − 3

2
points u in S p such that

u2 − 1
d

is a square. Set c , 0 such that
u2 − 1

d
= c2, then

dv2 ≡ c2 (mod p), which gives that Ẽd,p has two solutions (0, c) and (0,−c) for each u ∈ S p. So, it has p− 3 solutions over
S p × S p. Therefore, Ẽd,p has p − 3 + 2 = p − 1 solutions over Fp.

∗∗) Suppose now that, p ≡ 3 (mod 4). Using the above lemmas, then Ẽd,p has two solutions. And then, we consider the set

S p = Fp \ {0, 1, p − 1}. Thus, there are
p − 3

2
points u in S p such that

u2 − 1
d

is a square. Set c , 0 such that
u2 − 1

d
= c2,

then dv2 ≡ c2 (mod p), which gives that Ẽd,p has two solutions (0, c) and (0,−c) for each u ∈ S p. So, it has p− 3 solutions
over S p × S p. Therefore, Ẽd,p has p − 3 + 4 = p + 1 solutions over Fp. �

Note that ; • For p = 2, the equation Ẽd,p : u2 − dv2 ≡ 1 (mod p) has two solutions (1, 0), (1, 1) if d = 0, and two
solutions (1, 0), (0, 1) if d = 1.

• For p = 3, the equation Ẽd,p : u2 − dv2 ≡ 1 (mod p) has six solutions (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2) if d = 0, has
two solutions (1, 0), (2, 0) if d = 1, and has four solutions (1, 0), (2, 0), (0, 1), (0, 2) if d = 2.

Examples 3.5.

• If d ∈ Qp and p ≡ 1 (mod 4) :

1) Let p = 17, Consider the number of integer solutions, over F17, of the Diophantine equation

E : x2 − (t2 + 4)y2 − 4tx + 4(t2 + 4)y − 17 = 0,

for t = 4.

We have, P(t) = t2 + 4, then P(3) = 13 ≡ 13 (mod 17), which yields d = 13. Its known that the problem is reduced to the
Pell equation

Ẽ8,11 : u2 − 13v2 ≡ 1 (mod 17).

As d = 13 ∈ Q17, then #E(F17) = 17 − 1 = 16. in fact,

Ẽ13,17(F17) =


(0, 8), (0, 9), (1, 0), (3, 7), (3, 10), (4, 3), (4, 14), (6, 2),
(6, 15), (11, 2), (11, 15), (13, 3), (13, 14), (14, 7), (14, 10),
(16, 0)


.

• If d ∈ Qp and p ≡ 3 (mod 4) :

2) Let P(t) = t2 − 1 and p = 11, then for t = 4, P(t) = 15 ≡ 4 (mod 11), which yields d = 4. We consider the number
of integer solutions over F11 of the Pell equation Ẽ8,11 : u2 − 4v2 ≡ 1 (mod 11). As we have d = 4 ∈ Q13, then
#E(F13) = 13 − 1 = 12.

Ẽ4,11(F11) =


(0, 4), (0, 9), (1, 0), (2, 2), (2, 11), (6, 5), (6, 8), (7, 5),
(7, 8), (11, 2), (11, 11), (12, 0)

 .
• If d < Qp and p ≡ 1 (mod 4) :

1) Let P(t) = t2 − 2 and p = 13, then for t = 4, P(t) = 15 ≡ 2 (mod 13), which yields d = 2. We consider the number of
integer solutions over F13 of the Pell equation Ẽ2,13 : u2 − 2v2 ≡ 1 (mod 11). We have

d = 2 < Q13

p = 13 ≡ 1 (mod 4),

then #E(F13) = 13 − 1 = 12. In fact,

Ẽ2,13(F13) =


(1,0), (12,0), (3,2), (3,11), (4,1), (4,12), (8,5), (8,8), (9,1),
(9,12), (10,2), (10,11)

 .
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• If d < Qp and p ≡ 3 (mod 4) :

1) Let P(t) = t2 − t and p = 31, then for t = 4, P(4) = 12 ≡ 12 (mod 31), which yields d = 12. We consider the number
of integer solutions over F31 of the Pell equation Ẽ12,31 : u2 − 12v2 ≡ 1 (mod 31). We have

d = 12 < Q31

p = 31 ≡ 3 (mod 4),

then #E(F31) = 31 + 1 = 32. In fact,

Ẽ12,31(F31) =



(0, 7), (0, 24), (1, 0), (2, 15), (2, 16), (4, 3), (4, 28), (5, 8),
(5, 23), (7, 2), (7, 29), (10, 4), (10, 27), (11, 14), (11, 17),
(13, 13), (13, 18), (18, 13), (18, 18), (20, 14), (20, 17),
(21, 4), (21, 27), (24, 2), (24, 29), (26, 8), (26, 23), (27, 3),
(27, 28), (29, 15), (29, 16), (30, 0)


.

4. Conclusion

It is presented a study of the generalization of the quadratic Diophantine equation given by Arzu Ozkoc and Ahmet Tekcan
in ( Ozkoc and Tekcan, 2010). Some examples of the obtained results are considered.
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