Strict Positivity of Operators and Inflated Schur Products
- Ching-Yun Suen
Abstract
In this paper we provide a characterization of strictly positive matrices of operators and a factorization of their inverses. Consequently, we provide a test of strict positivity of matrices in . We give equivalent conditions for the inequality . We prove a theorem involving inflated Schur products [4, P. 153] of positive matrices of operators with invertible elements in the main diagonal which extends the results [3, P. 479, Theorem 7.5.3 (b), (c)]. We also discuss strictly completely positive linear maps in the paper.
- Full Text: PDF
- DOI:10.5539/jmr.v10n6p30
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org