Effect of Different Extrusion Processing Parameters on Physical Properties of Soy White Flakes and High Protein Distillers Dried Grains-Based Extruded Aquafeeds

  •  Sushil Singh    
  •  K. Muthukumarappan    


Nutritionally balanced ingredient blends for catla (Catla catla), belonging to the family Cyprinidae, were extruded using single screw extruder. The extrusion was carried out at five levels of soy white flakes content (21%, 29%, 40%, 52%, and 59% db), five levels of moisture content (15, 19, 25, 31, and 35% db) and five levels of barrel temperature (100, 110, 125, 140, and 150 ºC) using three different die nozzles (having L/D ratios 3.33, 5.83, and 7.25). Blends with net protein content of 32.5% contains soy white flakes, along with high protein distillers dried grains (HP-DDG), corn flour, corn gluten meal, fish meal, vitamin, and mineral mix. A central composite rotatable design (CCRD) and  response surface methodology (RSM) was used to investigate the significance of independent and interaction effects of the extrusion process variables on the extrudates physical properties namely pellet durability index, bulk density, water absorption and solubility indices and expansion ratio. Quadratic polynomial regression equations were developed to correlate the product responses and process variables as well as to obtain the response surfaces plots. The independent variables had significant (P < 0.05) effects on physical properties of extrudates: (i) higher soy white flakes content increased the pellet durability index and water absorption index, but decreased the water solubility index, (ii) higher temperature decreased pellet durability index, bulk density and water solubility index, (iii) increased L/D ratio from 3.33 to 7.25 increased the pellet durability index, expansion ratio but decreased the bulk density of the extrudates.

This work is licensed under a Creative Commons Attribution 4.0 License.