Using Residual Plots to Distinguish Cases of Predictor Omission in Linear Models
- Emily Nystrom
- Julia L. Sharp
- William C. Bridges, Jr.
Abstract
Residual plots are commonly used to diagnose possible model misspecification, including predictor omission. In this paper, we present a systematic workflow for using residual plots and partial residual plots to detect and distinguish several types of model misspecification in linear models. Our workflow uses a set of four Yes/No questions and is accessible to statisticians and practitioners of all experience levels.
Types of model misspecification considered by our workflow include four cases of predictor omission and two types of nonconstant variance. In particular, these cases of predictor omission are defined by the correlation and interaction status between the omitted predictor and the predictor included in the fitted model. Distinguishing cases of predictor omission is important because the impact of predictor omission can vary among cases. The interpretation of the parameter estimates in the statistical model can change depending on the approach.
- Full Text: PDF
- DOI:10.5539/ijsp.v11n4p25
Index
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- CNKI Scholar
- COPAC
- DTU Library
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Harvard Library
- Infotrieve
- JournalTOCs
- LOCKSS
- MIAR
- Mir@bel
- PKP Open Archives Harvester
- Publons
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- UCR Library
- WorldCat
Contact
- Wendy SmithEditorial Assistant
- ijsp@ccsenet.org