
International Journal of Statistics and Probability; Vol. 11, No. 4; July 2022
ISSN 1927-7032 E-ISSN 1927-7040

Published by Canadian Center of Science and Education

Using Residual Plots to Distinguish Cases of Predictor Omission in
Linear Models

Emily Nystrom1, Julia L. Sharp2 & William C. Bridges, Jr.1

1 School of Mathematical & Statistical Sciences, Clemson University, Clemson, SC, USA
2 Department of Statistics, Colorado State University, Fort Collins, CO, USA

Correspondence: Emily Nystrom, Independent Researcher, USA

Received: April 23, 2022 Accepted: June 13, 2022 Online Published: June 29, 2022

doi:10.5539/ijsp.v11n4p25 URL: https://doi.org/10.5539/ijsp.v11n4p25

Abstract

Residual plots are commonly used to diagnose possible model misspecification, including predictor omission. In this
paper, we present a systematic workflow for using residual plots and partial residual plots to detect and distinguish several
types of model misspecification in linear models. Our workflow uses a set of four Yes/No questions and is accessible to
statisticians and practitioners of all experience levels.

Types of model misspecification considered by our workflow include four cases of predictor omission and two types of
nonconstant variance. In particular, these cases of predictor omission are defined by the correlation and interaction status
between the omitted predictor and the predictor included in the fitted model. Distinguishing cases of predictor omission is
important because the impact of predictor omission can vary among cases. The interpretation of the parameter estimates
in the statistical model can change depending on the approach.

Keyword: model misspecification, model diagnostics, nonconstant variance, residual analysis

1. Introduction

Linear models are commonly used to understand relationships between predictors and a response. Residual plots can be
used to check model assumptions [Gray, 1989, Tsai, Cai, & Wu, 1998, Faraway, 2005]. For example, the linear model
assumptions of linearity and homogeneity of variance can be checked using residual versus fitted plots, and the normality
assumption can be checked using quantile-quantile plots of the residuals.

A partial residual plot (or added variable plot [Kutner, Nachtsheim, Neter, & Li, 2005] is a special type of residual plot that
displays a residual on the vertical axis and a partial residual on the horizontal axis. The partial residual plots introduced
by [Ezekiel, 1924] were initially used to visualize “curvilinear correlation” among dependent variables. In practice, a
commonly noted feature of the partial residual plot is its ability to account for predictors already in the fitted model
when considering the additional explanatory value of candidate predictors [Mansfield & Conerly, 1987, Faraway, 2005,
Kutner et al., 2005].

There are several ways in which models can be mis-specified, including predictor omission [Xu & Sinha, 2021]. Predic-
tors that are omitted from a linear model could be uncorrelated or correlated and may or may not interact with a predictor
already included in the model. Non-constant variance could also arise due to model misspecification. Our work extends
the literature regarding consideration of omitted predictors to diagnose model misspecification of these types. Distin-
guishing cases of predictor omission is important because the impact of predictor omission can impact the interpretation
of results [Greene, 2003, Woolridge, 2012, Nystrom, Sharp, & Bridges, 2019, Yoon & Welsh, 2020]. In particular, the
interpretation of the parameter estimates in the statistical model can change.

In this paper, we present a systematic, accessible workflow for using residual plots and partial residual plots to detect
and distinguish several types of model misspecification in linear models. In Section 2, residuals and partial residuals
are defined. In Section 3, traditional uses of residual and partial residual plots are described; then, we explain how to
compare residual and partial residual plots to detect correlation between a predictor already included in the fitted model
and a candidate predictor that has not been included in the fitted model but is included in the dataset being analyzed. In
Section 4, several types of model misspecification are described. In Section 5, our workflow is presented, and examples for
using our workflow are provided, illustrating how residual and partial residual plots can be used to detect and distinguish
the types of model misspecification discussed in Section 5. Examples include both simulated datasets (Sect. 5.2) and a
real SAT dataset (Sect. 5.3).
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2. Linear Models and Residuals

In Section 2, we provide brief definitions and notation for linear models and their corresponding residuals. For a
detailed motivation and development of linear models, see [Kutner et al., 2005] and [Ott & Longnecker, 2011]. See
[Kutner et al., 2005] for more information about residuals from linear models.

2.1 Linear Models

A simple linear model (LM) (Eq. 1) equates a response (Y) to a linear function of a single predictor (X1) and a random
error (ε):

Y = β01 + β1X1 + ε, where ε ∼ N
(
0, σ2

ε I
)
. (1)

As a matter of notation, we denote the response vector, the jth predictor vector, and the error vector as follows: Y =

(Y1,Y2, ...,Yn)T , X j =
(
X j,1, X j,2, ..., X j,n

)T
, and ε = (ε1, ε2, ..., εn)T , respectively, where n denotes the number of observa-

tions (sample size).

A two-predictor LM is given by

Y = β01 + β1X1 + β2X2 + ε, where ε ∼ N
(
0, σ2

ε I
)
,

and a two-predictor LM with an interaction term (X1X2) is given by

Y = β01 + β1X1 + β2X2 + β3X1 ◦ X2 + ε, where ε ∼ N
(
0, σ2

ε I
)
,

and ◦ denotes elementwise vector multiplication. In general, a k-predictor LM (Eq. 2) is given by

Y = β01 + β1X1 + ... + βkXk + ε, where ε ∼ N
(
0, σ2

ε I
)
. (2)

The linear predictor (η) is defined as the linear combination of predictors in the model (e.g., η = β0 +
∑k

j=1 β jXk in Eq. 2)
and represents the explained portion of the response.

For a k-predictor LM (Eq. 2), the corresponding estimated linear equation is given by

Ŷ = β̂01 + β̂1X1 + ... + β̂kXk,

where Ŷ denotes the predicted response, and β̂0, β̂1, ..., and β̂k denote the estimated coefficients. For our purposes, these
estimated coefficient values are determined through least squares estimation.

In each of the LMs discussed thus far (e.g., Eq.s 1 and 2), errors are assumed to be independent and normally distributed
with constant variance (i.e., ε ∼ N

(
0, σ2

ε I
)
), and predictors are assumed to be linearly related to the response; these

assumptions are common for traditional LMs. Because these errors are unobserved, related LM assumptions in the
population model are often assessed by analyzing estimated errors (e.g., residuals) that are produced when fitting the
model to observed sample data. The intuition behind residual analysis is grounded in considering whether the estimated
errors could reasonably be considered samples from the populations from which they were assumed to be generated.

2.2 Residuals

In the context of linear models, a residual (e) is defined as the difference between an observed response value and a
predicted response value and is used to estimate the error (ε) in the LM. The residual vector is given by

e = Y − Ŷ = (I − H)Y,

where H = X
[
XT X

]−1
XT is a projection matrix for the design matrix (X), which contains a column for the intercept and

for each predictor in the model (e.g., X = [1,X1, ...,Xk] for Eq. 2). If model errors (ε) are assumed to be independent and
normally distributed with zero mean and constant error variance (i.e., ε ∼ N

(
0, σ2

ε I
)
), then the distribution of the residual

vector is given by
e ∼ N

(
0, σ2

ε (I − H)
)
. (3)

A standardized residual (e(s)) is derived by dividing the residual by the estimated standard deviation. The vector of
standardized residuals is given by

e(s) =
e√

σ̂2
ε Diag(I − H)

=
e√

eT e
n−(k+1) Diag(I − H)

,
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where k denotes the number of predictors in the model. Instead of dividing by the sample standard deviation of the

residuals (
√

eT e
n−1 ), the denominator of the standardardized residual uses an estimate of the standard deviation based on the

residual vector’s assumed distribution (from Eq. 3). Our motivation for using standarized residuals in our workflow is
essentially to remove the issue of scale when plotting residuals (further discussed in Section 5).

A partial residual (e(Xm |X1,...,Xk)) is a residual from an estimated linear model that uses a candidate predictor (Xm) as the
response regressed on all other predictors (X1, ..., Xk) that are included in the fitted model (i.e., X̂m = γ̂01 +

∑k
j=1, j,m γ̂ jX j)

[Kutner et al., 2005]. In particular, when a simple LM (Eq. 1) is estimated using predictor X1, and X2 is a candidate
predictor, the vector of partial residuals is given by

e(X2 |X1) = X2 − X̂2 = X2 −
(̂
γ01 + γ̂1X1

)
. (4)

The use of partial residuals will be discussed in Section 3.

3. Using Residual Plots to Check Model Assumptions

When independence and homoscedasticity (constant variance) assumptions are satisfied, corresponding residual plots
should have random scatter (Fig. 1a). Conversely, the appearance of nonrandom patterns in residual plots may indicate
that an error assumption has been violated and/or that the linear predictor in the fitted model is misspecified.

3.1 Checking for Nonconstant Error Variance

The residual versus fitted response (Ŷ) scatterplot may be used to check the constant variance assumption (homoscedas-
ticity). A pattern in a residual plot may be indicative of nonconstant error variance [Weisberg, 1985], especially if the
residual scatter displays a fanning or funnel pattern (Fig. 1b). If the response variable needs to be log transformed to
produce a linear predictor (often called “intrinsically or transformably linear”), a funnel pattern may also occur in the
residual plot (Fig.s 1b and 2a). The appearance of nonconstant error variance may also be caused by omission of an
interaction term from the fitted model [Fox,1991], and a bowtie (Fig. 1c) or partial bowtie pattern may occur. And points
in the residual plot are evenly-spaced (vertically) within the pattern when an interaction term has been omitted from the
fitted model (Fig.s 1c and 2b), which is in contrast to the uneven spacing inside the funnel pattern when the response
needs to be transformed (Fig.s 1b and 2a).

Note that there are other causes of nonconstant variance and patterns in the residual plots (such as non-normal response
variables), but this article focuses on scenarios that can be appropriately modeled as traditional linear models.
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(c) Bowtie

Figure 1. Patterns of scatter within residual plots when considering the homogeneity of variance assumption: (a)
rectangle (random scatter); (b) funnel; (c) bowtie. Spacing of points within each shape is emphasized by background

shading. In these examples, points are relatively evenly spaced (vertically within each shape) for the rectangle and bowtie
patterns, whereas vertical spacing of points within the funnel is nonconstant. We note that scatterplots in this figure are
stylized to illustrate the patterns discussed. Scatter shown in Figures 1a and 1c is conceptual, and actual residuals were
not used for these subfigures. Residual plots with actual residuals are included in later figures (e.g., Fig.s 1b, 2-4, 7, 8)
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term in fitted model

Figure 2. Example residual plots for two sources of nonconstant variance: (a) incorrect response transformation; (b)
omission of interaction term

3.2 Checking for Predictor Omission

A residual versus candidate predictor scatterplot may be used to check whether a candidate predictor should be added to
the fitted model. Random scatter in a residual versus candidate predictor scatterplot supports leaving out the candidate
(Xm), whereas a nonrandom pattern supports adding Xm (or a function of Xm, such as X2

m) to the current model.

Comparing the residual versus candidate predictor scatterplot to the corresponding partial residual plot may help to iden-
tify cases in which a candidate predictor is correlated with a predictor that is already included in the fitted model. When
X1 and X2 are uncorrelated, the candidate residual scatterplot (e vs. X2) is similar to the residual scatterplot (e vs. e(X2 |X1))
(Fig. 3a). On the other hand, when the patterns of the two scatterplots are noticeably different, correlation between X1 and
X2 is suspected (Fig. 3b).

The impact of correlation on the partial residual plot can be explained mathematically by considering the difference
between X2 and eX2 |X1 (the horizontal components of the residual versus candidate plot and the corresponding partial
residual plot, respectively). Recall (Eq. 4) that γ̂0 and γ̂1 are estimated coefficients for an LM with response X2 and
predictor X1, and the estimated slope of the simple LM between X2 and X1 is given by γ̂1 = r1,2

s2
s1

. That is,

X2 − eX2 |X1 = X2 −
(
X2 − X̂2

)
= X̂2 = γ̂0 + γ̂1X1 = γ̂0 + r1,2

s2

s1
X1,

where r1,2 denotes the sample correlation between X1 and X2, and s1 and s2 denote sample standard deviations of X1 and
X2, respectively. Thus when other parameters, such as s1 and s2, are fixed, |̂γ1| decreases as |r1,2| decreases. When the
correlation between X1 and X2 is negligible, the difference between X2 and eX2 |X1 is approximated by γ̂0 (i.e., X2 − eX2 |X1 ≈

γ̂0 if r1,2 ≈ 0), in which case the partial residual plot is a horizontally-shifted version of the candidate residual plot.

While a candidate residual plot can be compared to a partial residual plot to detect correlation, the partial residual plot
also provides insight into the usefulness of adding the candidate predictor into a fitted model with its current predictors.
A linear trend in a partial residual plot gives evidence that a candidate predictor is linearly related to the response and that
the candidate predictor has additional explanatory value beyond that of the predictor(s) already included in the model.

Substitute vertical and horizontal components (e and eX2 |X1 , respectively) of the partial residual plot into a slope-intercept
equation of a line (i.e., e = meX2 |X1 +b). Suppose e = meX2 |X1 +b. Then the residual (Y−β̂0−β̂1X1 = m

(
X2 − γ̂0 − γ̂1X1

)
+b)

can be rearranged as Y =
(̂
β0 − mγ̂0 + b

)
+

(̂
β1 − mγ̂1

)
X1 + mX2. Thus, the slope of the partial residual plot (m) is related

to the additional contribution of candidate X2 to a fitted model that already includes X1.

A nonzero slope in the partial residual plot suggests that the current model may benefit from the addition of a particular
candidate predictor (e.g., X2 in Fig. 4a), whereas random scatter in the partial residual plot indicates that a particular
candidate predictor (e.g., X3 in Fig. 4b) will not add much explanatory value to a fitted model that already contains X1.
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(a) The partial residual plot and the residual plot are nearly identical because X1 and X2 are uncorrelated (r = −0.003).
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(b) The partial residual plot and the residual plot are visibly different because X1 and X2 are highly correlated (r = 0.985).

Figure 3. Comparison of candidate residual plots and partial residual plots to detect correlation between a candidate
predictor (e.g., X2) and a predictor already included in the fitted model (e.g., X1)

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −1 0 1 2 3

−
4

−
2

0
2

4

Partial Residual, e( X2 | X1 )

R
es

id
ua

l, 
e

(a) Linear trend occurs when a candidate predictor (e.g., X2
shown here) should be added to the fitted LM.
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Figure 4. Evaluating patterns in partial residual plots: (a) linear trend; (b) random scatter
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4. Cases of Misspecification Considered

Residual plots may be used to check for model misspecification. In this paper, we consider six LMs (Models 0 to 5), each
of which has one predictor (X1) or two predictors (X1 and X2), and possibly an interaction term (X1X2). Each of these
“true” models (Table 1) relates the response (T (Y)) to a linear combination of predictor(s) (denoted by the linear predictor,
η) and a random error (ε):

True Model: T (Y) = η + ε, where ε ∼ N
(
0, σ2

ε I
)
. (5)

Function T (Y) represents the appropriate transformation for a response variable – possibly the identity (T (Y) = Y).

Table 1. Response, linear predictor, and X1-X2 correlation status, for each of Models 0 to 5 (Eq. 5). Model 0 is a simple
LM with response Y and predictor X1. Model 1 includes two predictors that are uncorrelated with one another. Model 2
includes two predictors that are correlated with one another. Model 3 includes two uncorrelated predictors and their
interaction term. Model 4 includes two correlated predictors and their interaction term. Model 5 is a simple LM with
response ln(Y) and predictor X1. As a matter of notation, ρ1,2 represents the population correlation between X1 and X2.
When X1 and X2 are uncorrelated, ρ1,2 is zero; when X1 and X2 are correlated, ρ1,2 is some nonzero value in [−1, 1]. For
the linear predictors shown in this table, β0 can have any real value, whereas β1, β2, and β3 are nonzero so that models
are distinct (e.g., so that Model 1 is not a special case of Model 3)

Model Response, T (Y) Linear Predictor, η Correlation
0 Y β0 + β1X1 ρ1,2 = 0
1 Y β0 + β1X1 + β2X2 ρ1,2 = 0
2 Y β0 + β1X1 + β2X2 ρ1,2 , 0
3 Y β0 + β1X1 + β2X2 + β3X1X2 ρ1,2 = 0
4 Y β0 + β1X1 + β2X2 + β3X1X2 ρ1,2 , 0
5 ln(Y) β0 + β1X1 ρ1,2 = 0

Suppose a simple LM (Model 0) is fit to data generated from Models 0 to 5. Residual plots and partial residual plots can
be used to identify whether or not the fitted model (Model 0) is misspecified and to distinguish types of misspecification
(e.g., transformed response, missing predictor, missing interaction term), which we classify into cases (Fig. 5). We defined
six cases of model misspecification as follows. Case 0 is the null case (no misspecification) when the fitted model has the
appropriate form (i.e., is correctly specified). Otherwise, Case c (c = 1, ..., 5) denotes misspecification that occurs when
Model 0 is fit for data that are properly described by another model (i.e., Model c).

5. Workflow for Distinguishing Cases of Misspecification

In Section 5, we describe our workflow for distinguishing cases of misspecification (Sect. 5.1) and provide examples for
using our workflow (Sect.s 5.2, 5.3).

5.1 Description of the Workflow

To distinguish among the particular cases of misspecification described in Section 4 (Cases 0 to 5), our workflow uses
residual and partial residual plots to answer four questions. Figure 5 lists these questions, shows how they can be mapped
to cases, and describes which residual plots can be used to address each question. Questions are numbered for conve-
nience in referencing, and it is not necessary to answer these questions in any particular order. A template that combines
scatterplots and questions used in our workflow is shown in Figure 6.

5.2 Simulated Examples Using the Workflow

We will demonstrate how our workflow (described in Sect. 5.1) can be applied to four example datasets (Fig. 7). These
datasets were simulated using models described in Table 1. Thus, the “true” model is known for each dataset. For
Examples 1 to 4, β0 was fixed; its value does not impact the pattern of scatter of residual plots. The sample size (n) was
100 observations per dataset. Values of β1, β2, β3, and ρ1,2 (for these examples) are shown in Table 2.

Standardized residuals were used in Figure 7 so that the vertical scale would not itself be a distinction between examples
with transformation needed (unlike Fig. 2) since scale would vary across cases in realistic scenarios.

Example 1 (Fig. 7a): The standardized residual vs. predictor (left) scatterplot has random scatter and does not show
evidence of nonconstant variance, which indicates that transformation and interaction can be eliminated as possible types
of misspecifications. Candidate X2 can be eliminated as a predictor based on random scatter in the candidate versus
residual plot (middle) and the partial residual plot (right). The candidate residual plot (middle) and the partial residual
plot (right) are nearly identical, which indicates that X2 and X1 are uncorrelated. Thus, this is an example of Case 0 (fitted
model is correct) since we answered “No” to all four misspecification questions.
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Residual plots can be used to answer model misspecification questions, such as the questions shown below.

Figure 5. Tree diagram for cases of misspecification (Cases 0 to 5). This tree diagram relates Cases 0 to 5 through binary
questions about types of model misspecification that can occur when a simple LM is fit to data generated from Models 0

to 5.Question Use of Residual Plots
1. Should a Y transformation be considered? Look for funnel pattern in residual vs. Ŷ .
2. Should X2 be added to the fitted model? Look for linear trend in residual vs. X2.
3. Is X2 correlated with X1? Compare partial residual plot to residual vs. X2.
4. Should X1X2 be added to the fitted model? Look for bowtie pattern in residual vs. Ŷ .

1. Should a Y transformation be considered?

Use the residual vs. Ŷ scatterplot.

Case 5
2. Should X2 be added to the fitted model?

Use the residual vs. X2 scatterplot and the partial residual plot.

3. Is X2 correlated with X1?
Compare residual and partial residual plots.

4. Should X1X2 be added?

Use the residual vs. Ŷ scatterplot.

Case 4Case 2

No Yes

4. Should X1X2 be added?

Use the residual vs. Ŷ scatterplot.

Case 3Case 1

No Yes
No Yes

Case 0

No
Yes

No Yes

Figure 6. A template with the scatterplots and questions used in our workflow

Predictor, X1

Sca
tte

rp
lot

1
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Stand. Partial Residuals
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●
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Transform Y

Missing X2

Correlated X2

Missing X1 X2

Questions

Table 2. Parameters for simulated examples in Section 5.2. Regression coefficients β1, β2, and β3 correspond to
coefficients for the linear model from which response data was generated (Eq. 5; Table 1). The correlation coefficient,
ρ1,2, denotes the correlation between the populations from which X1 and X2 data were generated. Example numbers in
this table corresponds to simulated examples in Section 5.2

Example β1 β2 β3 ρ1,2

1 -3 0 0 0.00
2 10 -3 0 -0.62
3 -1 1 10 0.00
4 -1 0 0 0.00
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(a) Example 1: This Case 0 example exhibits random scatter in all residual plots.
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(b) Example 2: This Case 2 example has nonrandom scatter in the candidate residual plot and the partial residual plot. And the candidate residual plot is
noticeably different than the partial residual plot.
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(c) Example 3: This Case 3 example shows evidence of a missing, uncorrelated candidate predictor X2 and a missing X1X2 interaction term. That is, X2
and X1X2 should be added to the fitted model.

Figure 7. Example residual and partial residual plots sets to illustrate our workflow
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Example 2 (Fig. 7b): Transformation and interaction can be eliminated based on random scatter in the left plot. Based
on the linear trend in the middle and right plots, candidate X2 should be added to the fitted model. Finally, the difference
in shape between the middle and right plots indicates that X2 is correlated with X1. Thus, this is an example of Case 2,
which means X2 is linearly related to Y and correlated with X1.

Example 3 (Fig. 7c): The spacing of residuals within the “bowtie” pattern in the left plot indicates that an interaction
term should be added to the fitted model and that no response transformation is needed. The shape of the scatter in the
candidate and partial residual plots (middle and right plots, respectively) are nearly identical, which indicates that X2 is
uncorrelated with X1. Unlike Example 1, the scatter in Example 3’s candidate residual plot and the partial residual plot
appear to be nonrandom. And even though Example 3’s X2 data are linearly related to Y , neither the candidate residual
plot nor the partial residual plot show a linear trend because of the missing interaction term. Thus, this is an example of
Case 3, where X2 and X1X2 should be added to the fitted model and X2 is uncorrelated with X1.

Example 4 (Fig. 7d): The funnel pattern and uneven vertical spacing of residuals in the left plot indicates that a transfor-
mation is needed to correct this nonconstant error variance. By process of elimination, we can determine that Example
4 belongs to Case 5 because, of the six cases (Cases 0 to 5) discussed in this article, Case 5 is the only case with a
transformation needed. Thus, within our simulation, Case 5 can be distinguished from Cases 0 to 4 by answering a single
question. In general, additional cases could be defined such that some individual cases have both predictor omission
problems as well as an incorrect response transformation. Considering other misspecification questions, the middle and
left plots appear to be nearly identical, which indicates that X1 and X2 are uncorrelated. After accounting for uneven
vertical spacing of residuals spacing due to untransformed response, the pattern in the candidate and partial residual plots
does not appear to provide support for adding X2 to the model. If log(Y) had been linearly related to X2 and X1 and X2
were uncorrelated, we would expect to see evidence in the middle and right plots of an exponential relationship between
residuals and X2, which we do not see in Example 4.
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(d) Example 4: This Case 5 example could be corrected using the log-transformed response.

Figure 7. Workflow Examples (continued)

5.3 Application to SAT Dataset

We will illustrate our workflow with a real dataset. From R’s UsingR package, we used the SAT dataset [Verzani, 2015], a
well-known example of the impact of predictor omission introduced by [Guber, 1999]. The SAT dataset includes statistics
about schools and SAT performance and participation by state for the 1994-1995 school year. The following fields are
included for each state: average expenditure per student, average student-teacher ratio, average teacher salary, student
SAT participation rate, and average SAT scores (total, verbal, and math). Additional information about the dataset is
provided at http://jse.amstat.org/datasets/sat.txt.

We first note that unlike the previous, simulated examples, the “true” model is unknown for this real dataset. A typical
approach in this situation is to fit a simple linear model to a dataset (based on the principal of parsimony) and then use
residual plots to determine if a more complicated model (e.g., models 1 through 5) may be more appropriate.

We fit a simple linear model to the SAT dataset to predict average SAT math score (Y) using expenditure (X1). SAT
participation (X2; the percentage of eligible students who took the SAT) is considered as a candidate predictor that could
be added to the fitted model. Then we applied Steps 1 to 4 of our workflow (shown in Fig. 5) to assess this fitted model
based on the residual and partial residual plots in Figure 8.

33



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 11, No. 4; 2022

• Step 1: Vertical spacing of residuals in the residual versus predictor scatterplot does not show evidence that a
transformation of the response variable (math score) is needed.

• Step 2: Based on the linearity in the partial residual plot, we determined that the candidate predictor (X2, participa-
tion) should be added to the fitted model.

• Step 3: Differences in scatter between the candidate versus residual plot and the partial residual plot indicate that
the candidate predictor (participation) is correlated with the predictor already included in the model (expenditure).

• Step 4: For this small example dataset, the consideration of including the interaction term between expenditure and
participation in Step 4 is more challenging in that patterns may be less distinguishable when there are fewer data
points. There does not appear to be strong evidence for adding the expenditure-participation interaction term to this
model because there is not a general bow-tie shape to the residual pattern.

Figure 8. Residual and partial residual plots from a simple LM for SAT math score regressed on Education Expenditure
(X1). Participation (X2), the candidate predictor, is the percentage of eligible students who took the SAT. Black filled in
boxes in Figure 8 indicate the authors’ answers to workflow questions, whereas “x”s in previous figures indicate correct

answers (based on knowledge of the true model)
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5.4 Discussion: Using Simulation for Training Purposes

We advocate for the use of simulation when training students to identify potential problems with model assumptions.
Use of simulated datasets allows students to learn to recognize patterns, such as those indicative of misspecification types
discussed in this paper, while knowing the “true model.” Some benefits of using simulated data for initial training include
sample size control, more examples, and continued exploration. First, simulation allows for sample size to be chosen,
which, as discussed in Section 5.3, is important because the sample size can impact the recognizeability of some patterns.
Simulation can be used to illustrate what happens under different sample size scenarios. Simulation also allows for
increasing the number of examples to provide students with more practice, in general, and more practice distinguishing
differences between random variation in data generated by the same true model and systematic differences in the true
model. Third, in addition to the ability to apply lessons learned in a deductive way (as proposed in our workflow), some
types of interactive simulation allow for continued exploration through inductive reasoning. Students can come up with
their own scenarios of the true underlying models and then “see” how the residual patterns from these models appear
under different fitted models. Such hands-on, student-guided exploration has the potential to encourage and strengthen
students’ statistical intuition, while still within a known simulation framework.

6. Conclusion

A workflow for using residual plots to distinguish among cases of correlated and/or interacting predictor omission has
not been previously outlined in the literature. Rather than suggesting a new type of residual plot, we suggest using a
combination of traditional residual and partial residual plots to distinguish among five types of misspecification, include
two types of nonconstant error variance and four cases of predictor omission. Our suggested methods are accessible to
researchers of all experience levels with the goal of enabling a wide audience to distinguish types of misspecification
encountered in practice. In this paper, we described our workflow and illustrated its use for simulated examples and a real
example with SAT data.

We have identified four avenues of future work that build on the workflow described in this paper. First, future research
could be conducted to consider generalizing our workflow to include nonnormal distribution misspecification issues (i.e.,
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the generalized linear model (GLM) context). Specific questions for consideration include: Does combining residual
plots and partial residual plots identify correlation among predictors in the GLM context? and Can traditional residual
plots be used to distinguish sources of nonconstant error variance (e.g., missing interaction term versus transformed
response) in the GLM context? Second, future research could be conducted to evaluate the effectiveness of our workflow
in handling cases of model misspecification that simultaneously involve both predictor omission problems and incorrect
response transformations. Third, our workflow could be implemented in a web application to enable interactive practice
in using residual plots to distinguish among types of model misspecification. Fourth, future research could generalize the
workflow for contexts where there are more than two predictors considered (e.g., one predictor in the fitted model and two
predictors omitted from the model).
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