Cascade Rainfall Disaggregation Application in U.S. Central Plains


  •  Jurgen D. Garbrecht    
  •  Rabi Gyawali    
  •  Robert W. Malone    
  •  John C. Zhang    

Abstract

Long-term observations of daily rainfall are common and routinely available for a variety of hydrologic applications. In contrast, observations of 10 or more years of continuous hourly rainfall are rare. Yet, sub-daily rainfall data are required in rainfall-runoff models. Rainfall disaggregation can generate sub-daily time-series from available long term daily observations. Herein, the performance of Multiplicative Random Cascade (MRC) model at disaggregating daily-to-hourly rainfall was investigated. The MRC model was parameterized and validated with 15 years of continuous observed daily and hourly rainfall data at three weather stations in Oklahoma. Model performance, or degree to which the disaggregated rainfall time series replicated observations, was assessed using 46 variables of hourly rainfall characteristics, such as longest wet spell duration, average number of rainfall hours per year, and largest hourly rainfall. Findings include: a) average-type hourly rainfall characteristics were better replicated than single value characteristics such as longest, maximum, or peak hourly rainfall; b) the large number of sub-trace hourly rainfall values (<0.254 mm h-1) generated by the MRC model were not supported by observations; c) the random component of the MRC model led to a variation under 15% of the average value for most rainfall characteristics with the exceptions of the “longest wet spell duration” and “maximum hourly rainfall”; and d) the MRC model produced fewer persistent rainfall events compared to those in the observed rainfall record. The large number of generated trace rainfall values and difficulties to replicate reliably extreme rainfall characteristics, reduces the number of potential hydrologic applications that could take advantage of the MRC disaggregated hourly rainfall. Nevertheless, in most cases, the disaggregated rainfall generated by the MRC model replicated observed average-type rainfall characteristics well.



This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1927-0488
  • ISSN(Online): 1927-0496
  • Started: 2011
  • Frequency: semiannual

Journal Metrics

Google-based Impact Factor (2016): 6.22
h-index (November 2017): 12
i10-index (November 2017): 19
h5-index (November 2017): 11
h5-median (November 2017): 12

Learn More

Contact