Applying Biomimetic Principles to Thermoelectric Cooling Devices for Water Collection
- Kyle B Davidson
- Bahram Asiabanpour
- Zaid Almusaied
Abstract
The shortage of freshwater resources in the world has developed the need for sustainable, cost-effective technologies that can produce freshwater on a large scale. Current solutions often have extensive manufacturing requirements, or involve the use of large quantities of energy or toxic chemicals. Atmospheric water generating solutions that minimize the depletion of natural resources can be achieved by incorporating biomimetics, a classification of design inspired by nature. This research seeks to optimize thermoelectric cooling systems for use in water harvesting applications by analyzing the different factors that affect surface temperature and water condensation in TEC devices. Further experiments will be directed towards developing a robust, repeatable system, as well as an accurate measurement system. Surface modifications, device structure and orientation, and power generation will also be studied to better understand the ideal conditions for maximum water collection in thermoelectric cooling systems.
- Full Text: PDF
- DOI:10.5539/enrr.v7n3p27
Journal Metrics
Google-based Impact Factor (2016): 6.22
h-index (November 2017): 12
i10-index (November 2017): 19
h5-index (November 2017): 11
h5-median (November 2017): 12
Index
Contact
- Emily LinEditorial Assistant
- enrr@ccsenet.org