The Application of Possibility Distribution for Solving Standard Quadratic Optimization Problems
- Lunshan Gao
Abstract
A standard quadratic optimization problem (StQP) is to find optimal values of a quadratic form over the standard simplex. The concept of possibility distribution was proposed by L. A. Zadeh. This paper applies the concept of possibility distribution function to solving StQP. The application of possibility distribution function establishes that it encapsulates the constrained conditions of the standard simplex into the possibility distribution function, and the derivative of the StQP formula becomes a linear function. As a result, the computational complexity of StQP problems is reduced, and the solutions of the proposed algorithm are always over the standard simplex. This paper proves that NP-hard StQP problems are in P. Numerical examples demonstrate that StQP problems can be solved by solving a set of linear equations. Comparing with Lagrangian function method, the solutions of the new algorithm are reliable when the symmetric matrix is indefinite.
- Full Text: PDF
- DOI:10.5539/cis.v10n3p60
Journal Metrics
WJCI (2022): 0.636
Impact Factor 2022 (by WJCI): 0.419
h-index (January 2024): 43
i10-index (January 2024): 193
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org