The Collective Radioactive Decay of Atomic Nuclei Initiated by an External Mechanical Impact: Science Fiction or a New Class of Physical Processes
- M. K. Marakhtanov
- V. S. Okunev
Abstract
Abnormally high pressure or temperature can significantly reduce the lifetime of atomic nuclei including stable. A hypothesis on stable nuclei decays caused by mechanical collision of macro-objects containing these nuclei is put forward. Mechanisms of such decays are presented. At the same time the distance between interacting nuclei can be significantly higher than the range of nuclear interaction (as manifestations of strong interaction). In decays initiated by external impact, the mean lifetime with respect to particular decay can change depending on these factors. The hypothesis is verified experimentally. When a bismuth bullet collides with a steel flat target, we see different types of stable bismuth isotope decay including cluster one, which is not found in nature (if there is no external impacts). This new class of physical processes can be related to the collective radioactive decay of atomic nuclei initiated by an external mechanical impact.
- Full Text: PDF
- DOI:10.5539/jmsr.v7n2p34
Journal Metrics
Impact Factor 2022 (by WJCI): 0.583
Google-based Impact Factor (2021): 0.52
h-index (December 2021): 22
i10-index (December 2021): 74
h5-index (December 2021): N/A
h5-median (December 2021): N/A
Index
- CAS (American Chemical Society)
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Infotrieve
- JournalTOCs
- LOCKSS
- NewJour
- PKP Open Archives Harvester
- Qualis/CAPES
- SHERPA/RoMEO
- Standard Periodical Directory
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- John MartinEditorial Assistant
- jmsr@ccsenet.org