DNA Origami as a Tool to Design Asymmetric Gold Nanostructures
- George Amoako
- Zhou Ming
- Moses Eghan
- Samuel Sackey
Abstract
DNA origami technology provides a versatile approach for the chemical assembly of gold nanostructures. In this study the bottom-up approach of self-assembly using DNA in the origami process has been successfully applied to arrange five AuNPs asymmetrically. The DNA origami templates were modified to have binding sites that were extended with sticky ends to facilitate the attachment of the AuNPs. With the help of thiol chemistry, the AuNPs which were covered with DNA complementary to the sticky ends introduced on the DNA origami surfaces, we were able to attach the nanoparticles to the designed sites. It was realized that there were slight differences in the designed distances and the determined ones which were accounted for potentially by the deposition of the structures on the grids for imaging. The structures were characterized with gel electrophoresis and TEM. This asymmetric arrangement has the potential of exhibiting plasmonic behavior and circular dichroism when light is incident on the structure.
- Full Text: PDF
- DOI:10.5539/jmsr.v7n1p1
Journal Metrics
Impact Factor 2022 (by WJCI): 0.583
Google-based Impact Factor (2021): 0.52
h-index (December 2021): 22
i10-index (December 2021): 74
h5-index (December 2021): N/A
h5-median (December 2021): N/A
Index
- CAS (American Chemical Society)
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Infotrieve
- JournalTOCs
- LOCKSS
- NewJour
- PKP Open Archives Harvester
- Qualis/CAPES
- SHERPA/RoMEO
- Standard Periodical Directory
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- John MartinEditorial Assistant
- jmsr@ccsenet.org