Influence of Water Activity on Protease Adsorbed on Biochar in Organic Solvents


  •  Hidetaka Noritomi    
  •  Jumpei Nishigami    
  •  Nobuyuki Endo    
  •  Satoru Kato    
  •  Katsumi Uchiyama    

Abstract

We have found that the organic solvent-resistance of Alpha-chymotrypsin (Alpha-CT) is enhanced by adsorbing Alpha-CT onto bamboo charcoal powder (BCP), which is obtained by pyrolyzing bamboo waste under nitrogen atmosphere, and is markedly dependent on the thermodynamic water activity (aw) in organic solvents. When BCP-adsorbed Alpha-CT was immersed in acetonitrile at an appropriate water activity, it effectively enhanced the transesterification of N-acetyl-L-tyrosine ethyl ester (N-Ac-Tyr-OEt) with n-butanol (BuOH) to produce N-acetyl-L-tyrosine butyl ester (N-Ac-Tyr-OBu), compared to the hydrolysis of N-Ac-Tyr-OEt with water to give N-acetyl-L-tyrosine (N-Ac-Tyr-OH). When the water activity was 0.28, the initial rate of transesterification catalyzed by BCP-adsorbed Alpha-CT was about sixty times greater than that catalyzed by free Alpha-CT. Regarding the reaction selectivity which is defined as a ratio of the initial rate of transesterification to that of hydrolysis, BCP-adsorbed α-CT was much superior to free Alpha-CT. The catalytic activity of BCP-adsorbed Alpha-CT was markedly dependent on the reaction temperature. Furthermore, concerning the thermal stability at 50 oC, the half-life of BCP-adsorbed Alpha-CT exhibited 3.8-fold, compared to that of free Alpha-CT.



This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1927-0585
  • ISSN(Online): 1927-0593
  • Started: 2012
  • Frequency: semiannual

Journal Metrics

The data was calculated based on Google Scholar Citations

Google-based Impact Factor (2021): 0.52
h-index (December 2021): 22
i10-index (December 2021): 74
h5-index (December 2021): N/A
h5-median (December 2021): N/A

Learn more

Contact