Design for Manufacturing of an Aluminum Superplastic AA5083 Alloy Plate-Fin Heat Exchanger
- Nuha Juneidi
- Rania Asha
- Firas Jarrar
- Fahrettin Ozturk
Abstract
Compact, lightweight, strong, and corrosion-resistant heat exchangers are required for many applications. In heat exchangers, plate-fin exchangers design with corrugated fins of triangular cross-sections provide high heat transfer surface area to volume ratio. This study focuses on the design for manufacturing of an aluminum AA5083 alloy plate-fin heat exchanger. The superplastic forming method is considered for the fabrication of the heat exchanger. A two-dimensional plane strain finite element model is used to study the effect of the triangular fins’ aspect ratio on the thickness distribution and the required gas forming pressure cycles. The simulation results show that the thinning in deep channels can be improved by increasing the coefficient of friction but only up to a certain limit. In addition, increasing the coefficient of friction reduces the required applied pressure on the sheet and increases the forming time. The present effort represents a necessary step toward the design of sophisticated corrugated triangular fin surfaces considering both performance and manufacturability.
- Full Text: PDF
- DOI:10.5539/jmsr.v5n2p121
Journal Metrics
Impact Factor 2022 (by WJCI): 0.583
Google-based Impact Factor (2021): 0.52
h-index (December 2021): 22
i10-index (December 2021): 74
h5-index (December 2021): N/A
h5-median (December 2021): N/A
Index
- CAS (American Chemical Society)
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Infotrieve
- JournalTOCs
- LOCKSS
- NewJour
- PKP Open Archives Harvester
- Qualis/CAPES
- SHERPA/RoMEO
- Standard Periodical Directory
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- John MartinEditorial Assistant
- jmsr@ccsenet.org