The Dynamic Behaviour of the Floor of a Surrogate Vehicle Under Explosive Blast Loading


  •  Nicolas Newell    
  •  William Neal    
  •  Thanyani Pandelani    
  •  David Reinecke    
  •  William Proud    
  •  Spyros Masouros    

Abstract

Improvised Explosive Devices have been the signature weapon in the recent conflicts in Iraq and Afghanistan. High-rate axial forces exerted by the vehicle floor to the lower limbs of occupants have been the cause of severe injuries. In order to gain a greater understanding of the mechanisms of these injuries so that countermeasures can be developed, one is required to know how the vehicle floor behaves; therefore, the purpose of this study was to characterise the behaviour of a vehicle floor surrogate to a range of explosive loads. Explosive loads between 1 and 6 kg TNT were detonated beneath a vehicle floor surrogate resulting in peak floor velocities between 5.8 and 80.5 m/s reached in a time between 0.10 and 3.13 ms. The data can now be used to (a) test numerical models of blast and its interaction with structures for validity, and (b) ensure that the velocity profiles replicated in a laboratory environment to understand human tolerance to injury are relevant to the blast process. These will ensure that preventive measures are developed based on realistic physical and numerical models of injury.



This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1927-0585
  • ISSN(Online): 1927-0593
  • Started: 2012
  • Frequency: semiannual

Journal Metrics

Impact Factor 2022 (by WJCI):  0.583

Google-based Impact Factor (2021): 0.52
h-index (December 2021): 22
i10-index (December 2021): 74
h5-index (December 2021): N/A
h5-median (December 2021): N/A

Learn more

Contact