A Flexible Solid State EDLC From a Commercially Prepared Multiwalled Carbon Nanotubes and Hybrid Polymer Electrolytes
- M. Hashim
- Lawal Sa'adu
Abstract
An electrochemical symmetric capacitor with a modest energy and power densities has been fabricated using a commercially prepared carbon nanotubes as electrode and hybrid solid polymer electrolyte. This integrated separator and electrolyte layer is made up of a filter paper, a polyvinyl alcohol (PVA) doped with phosphoric acid at three different concentrations. The electrode material consisted of 90 % of the said carbon nanotubes and 10 % of Poly (Vinylidene Fluoride-Co-Hexafluoropropylene) (PVdF-HFP). Three cells were then assembled as follows; cell-A (N90PVdF-HFP10 |H50| N90PVdF-HFP10), cell-B (N90PVdF-HFP10 |H60| N90PVdF-HFP10) and cell-C (N90PVdF-HFP10 |H70| N90PVdF-HFP10). These as-assembled symmetric supercapacitor with an optimal mass ratio was able to be operated reversibly over a wide voltage range of 0.0–3.0 V, depending on the cell-type. Overall, the supercapacitor fabricated from cell A exhibits excellent rate capability with a capacitance, energy and power densities of 163.66 Fg?1, 822.00 Jg?1 and 5.38 Jg?1s?1 respectively, and long-term cycling stability of 5000 cycles.
- Full Text: PDF
- DOI:10.5539/jmsr.v3n4p13
Journal Metrics
Impact Factor 2022 (by WJCI): 0.583
Google-based Impact Factor (2021): 0.52
h-index (December 2021): 22
i10-index (December 2021): 74
h5-index (December 2021): N/A
h5-median (December 2021): N/A
Index
- CAS (American Chemical Society)
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Infotrieve
- JournalTOCs
- LOCKSS
- NewJour
- PKP Open Archives Harvester
- Qualis/CAPES
- SHERPA/RoMEO
- Standard Periodical Directory
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- John MartinEditorial Assistant
- jmsr@ccsenet.org