In-Situ Fabrication of Expanded Graphite-Carbon Nanotube Nanocomposite with Enhanced Thermal Conductivity


  •  Jun Cao    
  •  Chuanling Men    
  •  Hongyuan Chen    
  •  Geng Xu    
  •  Yongyi Zhang    
  •  Qingwen Li    

Abstract

The three-dimensional (3D) expanded graphite-carbon nanotube (EG-CNT) nanocomposite was prepared by in situ growing CNTs between graphite layers in thermally expanded graphite. The morphology and microstructure of the nanocomoposite were characterized by SEM, TEM, Raman and XRD analyses, respectively. The results show that intimately contacted EG-CNT interface has been formed within the multilayered composite architecture. Furthermore, paraffin was used as a filler to occupy the free spaces of the EG-CNT nanocomposite for thermal application. The as-obtained composite structure is inclined to conduct heat isotropically and shows a thermal conductivity higher than 10 W/m·K at a paraffin loading of 49 wt.%, which indicates that EG-CNT nanocomposite could be promising candidates for thermal management in electronic package.



This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1927-0585
  • ISSN(Online): 1927-0593
  • Started: 2012
  • Frequency: quarterly

Journal Metrics

Google-based Impact Factor (2017): 5.94
h-index (January 2018): 13
i10-index (January 2018): 20
h5-index (January 2018): 12
h5-median (January 2018): 26

Learn more

Contact