Effect of Copper on Tribological Characteristics and Subsurface Structure of Cast Fe-Cr-C Alloys in Sliding Friction


  •  Viktor Novytskyi    
  •  Volodymyr Havryliuk    
  •  Volodymyr Lakhnenko    

Abstract

The purpose of this work is to research the tribological characteristics and peculiarities of subsurface structure of friction layers formation of the cast Fe-Cr-C (1.2% C, 17–19% Cr) alloys with the copper content lower (0.4%) or higher (14.0%) than its limit of solubility in the matrix of the alloy. The different contents of copper in cast alloys have a significant influence on the characteristics of the alloy structure in the original state and subsurface friction layers and thus influence the tribological characteristics of these alloys. The alloy with 14.0% copper has minimal wear rate under dry and boundary frictions at the pressures of 1 and 5 MPa. This is achieved through optimizing the parameters of the fine structure of the surface friction layers of alloys and through plating effect of copper transferring from specimen to the counterbody and preventing the friction pair from severe wear.


This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1927-0585
  • ISSN(Online): 1927-0593
  • Started: 2012
  • Frequency: quarterly

Journal Metrics

Google-based Impact Factor (2017): 5.94
h-index (January 2018): 13
i10-index (January 2018): 20
h5-index (January 2018): 12
h5-median (January 2018): 26

Learn more

Contact