Compliant and Hard Cu(Ni)-C Nanocomposite Coatings
- Eric Brannigan
- Alan Jankowski
Abstract
Copper-Nickel-Carbon nanocomposite coatings are synthesized by the sequential sputter deposition of carbon (C) and a copper-nickel (Cu1-xNix) alloy. A distinct transition occurs as the Ni content (x) is increased from 0 to 1.00 during the Cu1-xNix alloy deposition. The coating morphology changes from a dispersion of metallic Cu-particles in a C matrix to a well-defined nanolaminate structure. Between these morphological forms, a new prototype nanocomposite is produced at a Ni concentration (x) of 0.1-0.4 with the appearance of an interpenetrating matrix structure of C and Cu(Ni). This morphological structure has both a high 24-27 GPa hardness (H) and a low elastic modulus (E) of 144-169 GPa that results in a record high values of H/E at 1/6 and a H3/E2 at 0.67-0.69 GPa in a novel compliant and hard coating.- Full Text: PDF
- DOI:10.5539/jmsr.v2n2p60
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
Impact Factor 2022 (by WJCI): 0.583
Google-based Impact Factor (2021): 0.52
h-index (December 2021): 22
i10-index (December 2021): 74
h5-index (December 2021): N/A
h5-median (December 2021): N/A
Index
- CAS (American Chemical Society)
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Infotrieve
- JournalTOCs
- LOCKSS
- NewJour
- PKP Open Archives Harvester
- Qualis/CAPES
- SHERPA/RoMEO
- Standard Periodical Directory
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- John MartinEditorial Assistant
- jmsr@ccsenet.org