Prefabricated Thin-walled Structural Elements Made from High Performance Concrete Prestressed with CFRP Wires
- Giovanni Terrasi
Abstract
The innovative combination of prestressed carbon fibre reinforced plastic (CFRP) wires and high performance concrete (HPC) opens up promising possibilities in the design of structural elements and load-bearing structures. This enables manufacturing of thin-walled, lightweight, filigree, fatigue resistant and very durable concrete elements with very low raw-material consumption for use in several market niches of the construction industry. Two or more of these advantages should simultaneously apply to the intended application for justifying the higher material costs of prestressing and passive CFRP reinforcements in comparison to prestressing and reinforcing steel. Significant economic benefits are to be found in the areas of maintenance of the load-bearing elements as well as their transport and installation. Recently, a first commercial breakthrough of this novel technique was achieved in the structural and architectural field with the realisation of two large building façades in Zurich, Switzerland using a total of 3000 m prestressed self compacting concrete profiles. In this paper design and experimental validation details as well as several field projects are described.- Full Text: PDF
- DOI:10.5539/jmsr.v2n1p1
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
Impact Factor 2022 (by WJCI): 0.583
Google-based Impact Factor (2021): 0.52
h-index (December 2021): 22
i10-index (December 2021): 74
h5-index (December 2021): N/A
h5-median (December 2021): N/A
Index
- CAS (American Chemical Society)
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Infotrieve
- JournalTOCs
- LOCKSS
- NewJour
- PKP Open Archives Harvester
- Qualis/CAPES
- SHERPA/RoMEO
- Standard Periodical Directory
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- John MartinEditorial Assistant
- jmsr@ccsenet.org