Evaluation of Inter-fiber Bonding in Wood Pulp Fibers by Chemical Force Microscopy
- Dongbo Yan
- Kecheng Li
Abstract
Atomic force microscopy with chemically modified tips was used to evaluate the inter fiber bonding properties of typical wood pulp fibers. Using –OH functionalized AFM tips as a model of cellulosic pulp fiber surfaces, pull-off forces and work of adhesion were measured in aqueous media. Three distinct tip-surface interactions were identified from force-displacement curves, representing three typical surface conditions of wet pulp fiber surfaces: solid, swollen and micro-fibrillated. The work of adhesion calculated shows that van der Waals forces are the major contributing factor on non-swollen solid regions of fiber surfaces. The difference in inter-molecular bond strength of different pulp fibers is relatively small. The inter-fiber bonding properties of pulp fibers are mainly controlled by the surface deformability, which determines the area of molecular contact at fiber-fiber physical interaction points.
- Full Text: PDF
- DOI:10.5539/jmsr.v2n1p23
Journal Metrics
Impact Factor 2022 (by WJCI): 0.583
Google-based Impact Factor (2021): 0.52
h-index (December 2021): 22
i10-index (December 2021): 74
h5-index (December 2021): N/A
h5-median (December 2021): N/A
Index
- CAS (American Chemical Society)
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Google Scholar
- Infotrieve
- JournalTOCs
- LOCKSS
- NewJour
- PKP Open Archives Harvester
- Qualis/CAPES
- SHERPA/RoMEO
- Standard Periodical Directory
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- John MartinEditorial Assistant
- jmsr@ccsenet.org