Comprehensive Stiffness of Prestressed Lattice Materials


  •  Mostafa Elsayed    
  •  Damiano Pasini    

Abstract

Several approaches to obtain the comprehensive stiffness of finite frameworks are present in literature; yet, the formulation has not been addressed for lattice materials and infinitely periodic structures. The objective of this paper is to introduce a systematic method to calculate the comprehensive stiffness of prestressed, infinitely periodic, structures and lattice materials with pin- and rigid-jointed connectivity. We first derive the comprehensive stiffness of a finite framework through the superposition of its material and nonlinear geometrical stiffness. By using the Bloch's theorem, we derive the irreducible form of the stiffness system of the finite framework, which represents the stiffness behaviour of the corresponding infinite, periodic assembly. Finally, the comprehensive stiffness of the infinite lattice is homogenized to generate the stiffness characteristics of the lattice material. A detailed example is provided to show the application of the methodology. Closed-form expressions of the elastic properties are presented for 12 planar lattices.


This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1927-0585
  • ISSN(Online): 1927-0593
  • Started: 2012
  • Frequency: semiannual

Journal Metrics

Impact Factor 2022 (by WJCI):  0.583

Google-based Impact Factor (2021): 0.52
h-index (December 2021): 22
i10-index (December 2021): 74
h5-index (December 2021): N/A
h5-median (December 2021): N/A

Learn more

Contact