On Certain Divisibility Property of Polynomials over Integral Domains
- Luis Caceres
- Jose Velez-Marulanda
Abstract
An integral domain $R$ is a \textit{degree-domain} if for given two polynomials $f(x)$ and $g(x)$ in $R[x]$ such that for all $k\in R$ $(g(k)\not=0\Rightarrow g(k)|f(k))$, then $f(x)=0$ or $\deg f\geq \deg g$. We prove that the ring of integers $\mathcal{O}_L$ is a degree-domain, where $\mathbb{Q}\subseteq L$ is a finite Galois extension. Then we study degree-domains that are also unique factorization domains to determine divisibility of polynomials using polynomial evaluations- Full Text: PDF
- DOI:10.5539/jmr.v3n3p28
This work is licensed under a Creative Commons Attribution 4.0 License.
Index
- Academic Journals Database
- ACNP
- Aerospace Database
- BASE (Bielefeld Academic Search Engine)
- Civil Engineering Abstracts
- CNKI Scholar
- COPAC
- DTU Library
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Google Scholar
- Harvard Library
- IDEAS
- Infotrieve
- JournalTOCs
- LOCKSS
- MathGuide
- MathSciNet
- MIAR
- PKP Open Archives Harvester
- Publons
- RePEc
- ResearchGate
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Standard Periodical Directory
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WorldCat
Contact
- Sophia WangEditorial Assistant
- jmr@ccsenet.org